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preface

This book is intended ta serve as an introduction to quantum physics.
In writing it, I have kept several guidelines in mind.

1. First, it is helpful for the development of intuition in any new field of
study to start with a base of detailed knowledge about simple systems. I have
therefore worked out a number of problems in gteat derail, so that the insight
thus obtained can be used for mere complex systems.

2. Every aspect of quantom mechanics has been helpful in understanding
some physical phenomenon. I have therefore laid great stress on applications at
every stage of the development of the subject. Although no area of guantum
physics is totelly developed, my intention is to bridge the gap between a
modern physics course and the more formal development of quantum mechanics.
Thus, many applicarions are discussed, and I have stressed order-of-magnitude
estimates and the importance of numbers.

3. In keeping with the level of the book, the mathematical structure has
been kepc as simple as possible. New concepts, such as operators, and new
mathematical tools necessarily make their appeatance. I have dealt with the
former more by analogy than by precise definition, and I have minimized the
usc of new tools insofar as possible,

In approaching quantum theory, I chose to start with wave mechanics and
the Schridinger equation. Although the state-vector apptoach gets at the
essential structure of quantum mechanics mote rapidly, experience has shown
that the use of more familiar tools, such as differential equations, makes the
theory more accessible and the carrespondence with classical physics more
transparent.

The book probably contains a little more material than can comfortably be
covered in one year. The basic material can be covered in one academic quarter.

wvii



viii Preface

It consists of Chapters 1 to 6, 8, and 9, in which the motivation for a quantum
theory, the Schrédinger equation, and the general framework of wave mechanics
are covered. A numbert of simple problems are solved in Chapter 5, and their
relevance to physical phenomena is discussed. The generalization te many
particles and to three dimensions is developed. The second-quarter material deals
directly with atomic physics problems and uses somewhat more sophisticared
tools. Here we discuss operator methods (Chapter 7). angular momentum
(Chaprer 11), the hydrogen atom (Chapter 12), operators, matrices, and spin
(Chapter 14), the addition of angular momenta (Chapter 15), time-independent
perturbation theory (Chapter 16), and the real hydrogen atom (Chapter 17).
This material prepares the student to cope with a large variery of problems that
are discussed during the third and last quarter. These problems include the inter-
action of charged particles with a magnetic field (Chapret 13), the helium atom
{Chapter 18), ptoblems in the radiation of atoms and related topics (Chapters 22
and 23), collision theory {Chaprer 24), and the absorption of radiation in matrer
{Chapter 25). This material is supplemented by a'more qualitative discussion of
the struccure of atoms and molecules (Chapters 19 to 21). The last chapter on
elementary particles and their symmetries setves the dual purpose of describing
some of the recent advances on that frontier of physics and of showing how the
basic ideas of quantum theory have found applicability in the domain of very
short distances. ' .

Several topics arise naturally as digressions in the development of the
subject matter. Instead of lengthening some long chapters, T have placed this
material in a separate “Special Topics™ section. There, relativistic kinematics,
the equivalence principle, the WKB approximation, a detailed treatment of
lifetimes, line widths and scattering resonances, and the Yukawa theory of
nuclear fotces ate discussed. For the same reason, a brief introduction to the
Fourier integral, the Dirac delta function, and some formal material dealing
with operators have been placed in mathematical appendices at the end of the
book.

I am indebted to my colleagues at the University of Minnesota, especially
Benjzmin Bayman and Donald Geffen, for many discussions on the subject of
quantum mechanics. I am grateful o Bugen Merzbacher, who read the maou-
script and made many helpful suggestions for improvements. I also thank my
students in the introductory quanmum mechanics course that I taught for several
years. Their evident interest in the subject led me to the writing of the supple-
mental notes that later became this book.

Stephen Gasiorowicz
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chapter 1

The Limits of Classical Physics

"The end of the nineteenth century and the beginning of the twentieth
witnessed a crisis in physics. A series of experimental results required concepts
totally incompatible with classical physics. The development of these concepts,
in a fascinating interplay of radical conjectures and brilliant experiments, led
finally to the guamtum theory.! Our objective in this chapter is to describe the
background of this crisis and, armed with hindsight, to expose the new concepts
in a manner char, while not historically comect, will make the transition to
quantum theory less mysterious for the reader. The new concepts, the particle
properites of radiarion, the wave properties of matter, and the quantization of physical
guantities will emetge in the phenomena discussed below.

A. Black Body Radiation

When a body is heated, it is seen to radiate. In equilibtium the lighe
emitred ranges over the whole spectrum of frequencies », with a spectral distri-
bution thar depends both on the frequency or, equivalently, on the wavelength
- of the light X, and on the temperature, One may define a quantity EQA, T), the
emissive power, as the energy emitted ac wavelength X per unit area, per unit
time. Theoretical research in the field of thermal radiation began in 1859 with

», 'the work of Kirchhoff, who showed that for a given X, the ratio of the emissive

power E ta the absorptivity A, defined as the fraction of incident radiation of
wavelength A that is absorbed by the body, is the same for all bodies. Kirchhoff
considered two emitting and absorbing parallel plates and showed from the
equilibrium condition that the energy emitted was equal to the energy absorbed
(for cach A), that the ratios E/A must be the same for the two plates. Soon

VAn interesting account of che development of quantum theory may be found in
M. Jammesr, The Concepinal Develapment of Quantum Mechanics, McGraw-Hilt, New York,
1966.



2 Quantum Physics

thereafter, he observed that for a black body, defined as a sutface thar totally
absotbs all radiation thar falls on it, so that A = 1, the function EQ\, T) is a
universal function. )

In ordet to study this function it is necessary to obrain the best possible
source of black body radiation. A practical solution to this problem is to con-
sider the radiation emerging from a small hole in an enclosure heated to a tem-
petature T. Given the imperfections in the surface of the inside of the cavity,
it is clear that any radiation falling on the hole will have no chance of emerging
again. Thus the surface presented by the hole is very nearly “totally absorbing,”
and consequently the radiation coming from it is indeed “black body radiation.”
Provided the hole is small enough, this radiation will be the same as that which
falls on the walls of the cavity. It is therefore necessary to understand the distri-
bution of radiation inside a cavity whose walls are at a temperature 7,

Kirchhoff showed chat the second law of thermodynamics requires that
the radiation in the cavity be isotropic, that is, that the flux be independent of
direction; that it be homogeneous, that is, the same at all points; and that it be
the same in all cavities at ¢he same tem peratdre—all of this for each wavelength.?
The emissive power may, by simple geometric arguments, be shown o be
connected with the energy density #(A, T) inside the cavity. The relation is

”(hs T) = (1'1)

4E(A, T
c
The energy density is the quantity of theoretical interest, and further under-
standing of it came in 1894 from the work of Wien, who, again using very

general arguments,® showed that the energy density had to be of the form

w0, T) = X5 fOAT) (1-2)

with fstill an unknown funcion of a single vatiable. If, as is convenient, one
deals instead with the energy density as a function of frequency, #{(», T), then it
follows from the fact that

wle, T) = ul\, T)‘;—‘:‘ ‘

= 5« T) (1:3)

2 These matters are discussed in many textbooks on modern physics and statistical
physics. References can be found at the end of this chapter,

I Wien considered a perfectly reflecting spherical cavity contracting adiabatically.
The redistribution of the energy as a function of X has to be caused by the Doppler shift
on reflection, See Chaprer V in F. K. Richumyer, E. H. Kennard, and J. N. Caoper Intro-
duction to Modern Phyiics, McGraw-Hill, New York, 1969.
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Fig. 1-1, Experimental verification of Eq. 1-2 in the form 2(A,T)/T% = a
universal function of AT.

thar the Wien law reads
aly, T) = vig (—;) (1-4)

The implications of this law, which was confirmed expetimentaliy (Fig. 1.1),
are twofold: '

1. Given the spectral distribution of black body radiation at one tem-
petature, the distribution at any other temperature can be found with the help
of the expressions given above.

2. If the function f{x)—or, equivalently, the function g{x)—has a maxi-
mum for some value of x > 0, then the wavelength M., at which the energy
density, and hence the emissive powet, has its maximum value, has the form

b
Rmxx = = 1
7 (1'3)
R ‘where & is a universal conseant.
Wien used a model (of no interest, except to the historian) ro predict a
form for g{v/T?. The form was
gu/T) = Gir (1-6) .

and, remarkably enough, chis form, containing two adjustable parameters, fic
the high frequency (low wavelength) data very well. The formula is not, how-
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Fig. 1-2. () Distribution of power radiated by a black body at various tempera-
rures. (4) Comparison of dara ar 1600°K with Planck formula and Rayleigh-Jeans
formula,

ever, in 2ccord with some very general notions of classical physics. Rayleigh, in
1900, derived the result

wp, T) = 8—112 &T (1-7)

e

where £ is Boltzmann's constant, £ = 1.38 X 10~% erg/deg and ¢ is the velocity
of light, ¢ = 3.00 X 10" emy/sec. The ingredients that went into the derivation
wete (1) the classical law of equipartition of energy, according to which the
average energy per degree of freedom for a dynamical system in equilibrium is,
in this context,? £T, and (2) the calculation of the number of modes (i.c., degrees
of freedom) for eleccromagnetic radiation with frequency in the interval (v, » +
dv), confined in a cavity.® :

4'The equipartition law predicts that the energy per degree of freedom is £T/2. For
an oscillator—and the modes of the electromagneric field are simple harmonic oscillators—
a contribution of £T/2 from che kinetic energy is matched by a like contribution from the
potential energy, giving £T.

% We will need this result again, and derive it in Chapter 23, The number of modes is
4?3, farther mulkiplied by 2 facror of 2 because transvetse electromagnelic waves cof-
respond to twa-dimensional harmonic oscillators.
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The RBayleigh-Jeans law (1-7) (Jeans made a minor conuibution to its
derivation) does not agree with experiment at high frequencies, where the Wien
formula works, though it does fit the experimental curve at low frequencies
(Fig. 1.2). The Rayleigh-Jeans law cannor, on general grounds, be correct, since
the total energy density (integrated over all frequencies) is predicred to be
infinite!

~ In 1900, Max Planck found a formula by an ingenious interpolation
between the high-frequency Wien formula and the low-frequency Rayleigh-
Jeans law. The formula is
o, T) = (19
where b, Planck's constant, is an zdjustable parameter whose numerical value was
found to be 5 = 6.63 X 107 erg sec. This law approaches the Rayleigh-Jeans
form when » -~ 0, and reduces to

) ﬂ(l’, — si_h pd g—hr 1T (1 _ rhlikf)—l
. e

iz

h
8_:? y3 g—ha kT (1-9)

when the frequency is large, or, more accutately, when Av >3 ET. If we tewrite
the formula a5 a product of the number of modes [we obtain this from (1-7) by
dividing the energy density by #T) and another factor that can be interpreted as
the average energy per degree of freedom

8xv? hy
“o. Ty =5 ir
_emt o BT

(1-10)

o ekv,’ki"‘ —1

“we see that the classical equipartition law is altered whenever the frequencies are
- mot small compared wich £7/h. This altetation in the equipartition law shows
"~ that the modes have an average energy that depends on their frequency, and
- thar the high frequency modes have 2 very small average energy. This effective
;. cut-off removes the difficulty of the Rayleigh-Jeans density formula: the toral
- energy in a cavity of unit volume is no longer infinite. We have

Brh [ e
ur) = Tt J o ¥ ownr _
_ 8ah (RT\L (he/RT)S d{hw /RT)
Tooa h . e leT _

8kt « x¥
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The integtal can be evaluated,® and the result is the Stefan-Boltzmann expression
for the toral radiation energy per unit volume

UT) = aT* {1-12)

with & = 7.56 X 107 erg/em?® degt, derived much earlier, except for the
numerical constant in front, on the basis of thermodynamical reasoning. A
departure from the pure equipartition law was not entirely unexpected: one
consequence of it was the Dulong-Petit law of specific heats, according to
which the product of the atomic {or molecular) weight and the specific heat is 2
constant for all solids; yet departures from the Dulong-Petit predictions were
obsetved as early as 1872.7 These deparrures indicated thar the specific heat
decreased at lower temperatures.®

The unqualified success of his formula drove Planck to search for its
origin, and within two months he found that he could detive it by assuming
thar the enetgy associated with each mede of the electromagnetic ficld did not
vaty continuously {with average value £T) but was an integral multiple of some
minimum quantum of enetgy & Under these circumstances 2 calculation of the
average encrgy associated with each mode, using the Boltzmann probabiliry
distribution in a system of equilibtium at cemperature T,

g EIRT

P(E) = f 'e_m {1-13)
E

led to
E= ) EP()
E

> gt
asl_

»
Z g
2=0

[ dor xcb (2= — 1)-1-] dxxaezzgﬂf

i & =t
Yy T

her RS 1)‘[ dryte Z 15

* Aceording to the equipartition faw an assembiy of N oscillators (and a lattice of
atoms with elastic forces between them may be so viewed) will have energy INET, the
factor 3 coming from the face thac the oscillators in a solid are three- dimensional, rather
than two-dimensional 25 For the radiition field in an enclosure. The specific heat for a mole
is obrained by differendating with respece to T’ and sewing N = N, Avogadro's number,
so that s = 3NoE = 3R where K = 8.28 x 107 erg/deg.

£ Specific heats will be discussed very briefly in Chapter 20.
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d w
—& Iug:ae

L)
Z gnE

rn=0 F=£/kT

It

e—r
= §—
1 — % gueypr

&

= gnr {1-14)

This agrees with (£-10) provided we mzke the identificarion
§=h (1-15)

and de not change the number of modes.
Flanck argued that for some unknown teason the atoms in the walls of the
cavity emitted radiation in “quanta” with energy whv (» = 1,2,3, .. ), but
- Consistency demanded, as established by Einstein a few years larer, that electro-
magneic radiation bebaved as if it consisted of a collection of energy quanta with
energy hy.®

The energy camtied per quantum is extremely small. For light in the
optical range, with, say, A = 6000 A,

6.63 X 107 X 3.00 X 10"

[
—_— = - o~ 10—12
N 6% 105 3.3 X erg

b = h

50 that the number of light quanta of this wavelength, emitted by a 100-watt
source, say, is
100 X 107

= 33w 10 2 3 X 10% quanta,/sec

With so many quanta present, ic is pethaps not surptising that we do not ex-
perience the particle nature of light directy; we shall see that on a mactoscopic
scale no deviations from classical optics ate expected. Nevertheless, Planck’s
interpretation of his formula radically changes our picture of radiation,

&

B, The Photoelectric Efect

As successful as the Planck formuls was, the conclusion from it of the
quantum nature of radiation is hardly compelling, An imporrant contribution
to its acceptance came from the work of Alberr Einstein, who in 1905 used the

* Fot 2 given frequency » there may be any integral number of quantz present, and
hence the enetgy can take on the values nbs, withn = 0,1,2,3, . . . .
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concept of the quantum natute of light to explain some peculiat properties of
metals, when these are irradiated with visible and ultraviolet lighe. -

In 1887, the photoelectric effect was discovered by Hertz, who, while
engaged in his famous expetiments on electromagnetic waves, found that the
length of the spark induced in the secondary circuit was reduced when the
tezminals of the spark gap were shiclded from the ultraviolet light coming from
the spark in the primary circuit. His observations artracted much intetest and the

following facts wete established by further experiments:

1. When polished metal plates are irradiated, they may emit electrons;!?
they do not emit positive ions.

2. Whether the plates emit electrons depends on the wavelength of the
light. In general chere will be a threshold thar varies from metal to metal: only
light with a frequency greater than a given threshold frequency will produce a
photoelectric curtent.

3. The magnitude of the current, when it exists, is proportional to the
intensity of the light source.

4. The energy of the photoelectrons is independent of the intensity of the
light source but varies linearly with the frequency of the incident light.

Although the existence of the photoelectric effect can be understood
within the framework of classical electromagnetic theory, since it was known
that thete were electrons in metals, and one could imagine them to be accelerated
by absotption of radiation, the frequency-dependence of the effect is not compre-
hensible within that framework. The energy carried by an electromagnetic wave
is proportional to the-intensity of the source, and frequency has nothing to do
with ic. Furthetmore, a classical explanation of the effecc, which would have to
involve the concentration of the energy deposited on single photoelectrons,
would carry with it an implied time delay berween the asrival of the radiation
and the departute of the electron, the delay being longer when the intensity is
decreased. In fact, no such time delays were ever obsetved, at least aone longet
than 10 sec, even with incident radiation of very low intensity.

Einstein considered the radiation to consist of a collection of quanta of
energy hv, where v is the frequency of the light. The absorption of a single
quantum by an electron—a process that may take less time than the upper
limit quored above—increases the electron energy by an amount bv. Some of
the energy must be expended to separate the electron from the metal. This
amount, W (called the work function), might be expected to vaty from metal to
meral, but should not depend on the electron encrgy. The test is available for
the electron kinetic encrgy, so that on the basis of this picture one expects that

19 This was established by a2n e/m measurement.
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Fig. 1-3. Photoelectic effece data showing a plot of retarding
potential necessary to stop electron flow from a metal (lithium),

or equivalently, electron kinetic enetgy, as a function of frequency

of the ineident light. The slope of the line is &/e.

the following relation between clectron velocity » and light freqﬁency v
dm = by — W {116}

should hold. The threshold effect and the linear telation between electron
kinetic energy and the frequency are contained in this formula. The propoz-
tionalicy of che current and the soutce intensity can also be understood in terms
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of these light quanta, ot photons, as they came to be calied: a more intense light
soutce emits more photons, and these in tum can liberate more electrons.

Millikan caried out extensive experiments and established the cotrectness
of the Einstein formula (Fig. 1.3). What Millikan's and the earliet experiments
proved was that sometimes light behaves like a collection of particles, and
thar these “particles” can act individuaily, so that it is possible to contemplate
the existence of a single photon and ask what its properties are. A by-product of
these experiments was information abeut merals. It was found that W was of
the order of several electron valts (1 €V = 1.6 X 102 erg), and this could be
correlated with other properties of the metals,

C. The Compton Effect

The experiment that provided the most direct evidence for the particle
nature of radiation is the so-called Compton effect. Compton discovered that
radiation of a given wavelengrh (in the X-ray region) sent through a metallic
foil was scawered in a manner not consistent with classical radiation theory.
According to classical theory, the mechaaism for the effect is the re-radiation of
light by electrons set into forced oscillations by the incident radiation, and this
leads to the prediction of intensity observed at an angle 8 that vaties as
(1 + cos? 8), and does not depend on the wavetength of the incident radiation.
Compton found that the radiation scatrered through a given angle actually
consists of two components: one whose wavelength is the same as that of the
incident radiation, the other of wavelength shifted relarive to the incident wave-
length by 2n amount that depends on the angle (Fig. 1.4). Compton was able to
explain the “modified”” component by treating the incoming radiation as a beam
of photons of energy kv, with individual photons scattering elastically off
individual electtons. In an elastic collision, momentum as well as energy must
be conserved, and we must fifst assign 2 momentum to the photon. By analogy
with refativistic particle kinematics we argue that

b= hfc (1-17)

The argument is that it follows from the relativistic relation between energy and
momentum

E = [(mo®)* + (p)']'* -(1-18)
where my is the rest mass of the particle, that the velocity at this momentum is
dE 1 e
p= — = P Y ol {1-19)

G B (mict + e

For a photon this is always ¢, and hence the photor rest mass must ke zere. Thus the
relation (1-18) becomes _
E=pe (1-20)
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I

X

Fig. 1-4. The spectrum of radiation scat- -
tered by catbon, showing the unmodified
line 2t 0.7078 A on the left and the shifted
line at 0.7314 & on the right. The former is
the wavelength of the primary radiation.

which yields (1-17) when we substitute £ = fv. One may also derive (1-20)
from consideration of the energy and momentam of an electromagnetic wave,
but the analogy argument is simpler.

Consider, now, a photon with ipitial mementum p, incident upon an
electron ar rest. After the collision, the photon momentum is p’, and the electron
recoils with momentum P. Conservation of momentum yields (Fig. 1.5)

p=p +P {1-21)
from which it follows that
' Pl=(p-p)=p"+p?—2pp (1-22)
Energy conservation reads
b + mit = b' + (it 4 PP (1-23)

where m is the electron rest mass. Hence
it Pt = (he — B + nct)?
= (b — ") + 2met(he — he') + w2t

"
On the other hand (1-22) may be rewritten in the form

hvy? o' \2 ! P
P2=(—v) +(l) —Z’h—"‘ﬂcosﬂ
¢ c ¢ ¢
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v

P
Scattered
photon
Incident
photan Recailing
electron
Fig. }-5. Kinematics for Compton effect.
that is,
Pt = (w — W)+ 2(ke) (W) (1 — cos 8) (-124)

where § is the photon scatteting angle. Thus
hv'(1 — cos 8) = met (v — V)

or equivalently

Ao— N == L (1 — cos 8) (1-25)
me

The measurements of the madified component agree very well with the above
prediction: The unmodified line is presumably due to the scattering by the
whole atolm; if # is replaced by the mass of the atom, the shift in the wavelength
is vety small, since an atom is many thousands times more massive than an
electron. The quantity 4/m¢ has the dimensions of a length. Tt is called the
Compton wavelength of the electron, and its magnitude is

k
—— 2.4 % 107'%cm (1-26)
mit

Measurements of the electron recoil were also made, and these are in agreement
with the theory. It was furthermore determined by good time fesolution coinci-
dence experiments, that the outgoing photon and the recoil electron appeat
simultaneously. Thete is no question of the correctness of the interpretation of
the collision as an ordinary “billiard hall” type of collision, thac is, of the
particlelike behavior of the phoron. Since radiation also has wave properties
and exhibits intetference znd diffraction, we might expect some conceptual
difficulties. These exist, and we shall discuss them at the end of the chaprer,
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D. Electron Diffraction

In 1923 De Broglie, guided by the analogy of Fermat’s principle in optics,
and the least-action principle in mechanics, was led to suggest that the dual
wave-patticle narure of radiation should have its counterpart in a dual particle-

- wave nature of matter, Thus pasticles should have wave properties under certain
circumstances, and De Broglie suggested an expression for the wavelength
associated wirh che particle.! This is given by

A= — (1-27)

where b is Planck’s constant, 2nd p is the momentum of the particle. De Broglie's
work atcracted much attention, and many people suggested that verification
could be obtained by observing electeon diffraction.’? The experimental ohsetva-
tion of this effect occurred in experiments of Davisson and Germer, who found
that in the scattezing of electrons by a crystal surface, there was preferential
‘scatteting in certain directions.
Figure 1.6 is a simplified picture of what happens. In the scattering of
waves by a periodic’ structure, there will be a phase difference between waves
toming from adjacent scattering ‘‘planes,” whose magnitude is given by
2xr/A) 2a sin 6. Thete will be constructive intetference whenever this phase
difference is equal 1o 2xn, where # is an integer, that is, when
a = 22 5in & (1-28)
]
The interference pattern observed in electron scattering by Davisson and Germer
ould be correlated with the above formula, provided the association (1-27) was
ade. This verification constituted a major step in the development of wave
mechanics.
' The particle diffraction experiments have since been carried out with
molecular beams of hydrogen and helium, and with slow neutrons. Neutron
diffraction is particularly useful in the study of crystal structure, To get a rough
didea of the kind of energies needed for the diffraction experiments, we note
that the crystal spacings are of the order of Angstroms. The grating constant in
the Davisson-Germer expetiment, i which nickel was used, was @ = 2.15 A.
Hence N is of the order of 107% cm, so that p = £/A =2 6.6 X 10~1* gm cm/sec.
Thus for electrtons the kinetic eneigy is p2/2m. = (6.6 X 10719/

! Chapter 2 contains a discussion of wave packets in whxch the De Broglie relation
emerges as a very plausible result.

' The history of the verification of De Broglie’s conjecture can be found in Jammer,
The Conceprual Develapment of Quantum Meckanics.
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Fig. 1-6. Schematic drawing of electron scattering
geometry.

(2 X 0.9 X 107%) == 2.5 X 107" ergs, and for neutrons the kinetic energy is
P/2m, = (me/m) X (electron enetgy) = (1/1840). X 2.5 X 1071 ergs =
1.3 X 107" ergs. In terms of the more convenient electron volt, these energies
are approximately 160 eV and 0.08 eV, respectively.

On 2 macroscopic scale, the wave aspects of particles are beyond our
ability to observe them. A droplet 0.1 mm in size, moving at 10 cm/sec. will
have 2 De Broglie wavelength of A = 6.6 X 107%/4 X 107" = 1.6 X 107 cm.
Since the "size” of 2 proton is about 1071 cm, clearly cthere is no way in which
the wave propetties of an object of dimensions significantly larger than 107 cm
can be observed. As for the particle properties of radiation, it is the smallness of
b that determines the classical properties, in the sense that the dual aspects
become appasent only when the product of momentum and dimension is of the
order of k. We shall see that the formalism of quantum mechanics describes the
sitwation very well.

E. The Bohr Atom

Experiments catried out in 1908 by Geiger and Marsden on the scattering
of « patticles by thin foils showed significant large angle scateting, rorally
inconsistent with expectations based on the Thomson model of the atcm,
according to which electrons wete embedded in a continuous disttibution of
positive charge. Ruthetford proposed a new model that accounted for the dara:
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all of the positive charge and essentially all of the mass of the acom were con-
centrated in a region that is small compared with the dimensions of the atom,
that is, in the nuclexs of the atom. The electrons, attracted to the nucleus with a
1/r? force, traveled in planetary orbits about it. Although the model explained o
particle scartering quantitatively, it faced two insuperable difficulties. Since it
implied a periodic motion for the electrons, it could not account for the spectra
of radiation from atoms, which did not have the expected harmonic structure <
(cf. 2 vibrating string), but instead had the scructure

1 ( 1 1 )
\ = const. iy (1-29)
whete »; and . were integers. It also lacked a mechanism for stabilizing atoms: |
an electron in a circular or elliptic orbit is constantly acceletating, and according
to electremagneric theory, should be radiating. The constant Joss of energy
. would, within a very short time, (of the order of 107 sec) lead to the collapse
of the atom, with the electrons plunging into the nudeus.

Just two years after this model was proposed, Niels Bohr in 1913 advanced
" seties of postulates, which, while sharply breaking with classical theory,
explained the spectral structure and bypassed the stability problem. Bohr

1. The electrons move in orbits restricted by the requitement that the
i angular momentum be an integral mulriple of 5/2«, that is, for circular orbits of

nh
mer = —— {1-30)
2
-and furthermore the electrons in these orbits do not radiate in spite of their
cceleration. They were said to be in stationary states,

2. Electrons can make discontinuous transitions from one allowed orbir to
-another, and the change in energy, E — E’ will appear as radiation with frequency
E -~ F

v = T . (1-31)

1

An atom may absorb radiation by having its electons make a transition to a
higher energy otbit.

The consequences of these postulates are very simply deduced for one-
electron atoms such as hydrogen, singly ionized helium, and so cn, if we deal
with the circular otbits.!* If the nuclear charge is Zgand that of the electron is

13 When ellipticz! orbits areallowed, 2 much richer scruceure emerges. This will be
discussed in Chaprer 12,
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—e, and if the radius of the orbirt is r, then, taking the nuclear mass to be infinite,
we balance the Coulomb force against the centrifugal force :

Z 2z b
g o
This, when combined with (1-30) leads to
2xe*Z
w5
and
1 #2h?
"= 4—1r‘ Zetm (1-34)
The energy is
Ze 2x2eTm
E = }m® — - =" r’;ﬂ! (1-35)

which, by postulate (2} immediately leads to the general form (1-29) (Fig. 1.7).

Before evaluating these quantities to obtain an idea of their magnitude,
we will introduce some notations that will be very useful. First of al, it is bi2x
rather than b that appears in most formulas in quantum mechanics. We therefore
define

h
= oy = 10545 X 107 erg sec (1-36)

To keep the expressions for the energy simple, we shall deal with the angular
frequency w, rather than », where

w = 2ry (1'37)
Thus (1-31) reads
E—FE
= 1-
w r. (1-38)
Similarly, the quantum of radiation carries energy
E=fw (1-39)
It is convenient to introduce the “‘reduced wavelength”
A
- =t (1-40)
27 w

(1-41)
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nane atomic transitions.

mr=nh(n=1,2,3...)

g2 1 ¥
» fir  137.0388

i=10 f=1 {=2
E=U
085 eV} n=a
—-151 eV
—34 eV |-
C. 8 E N.
138 ev|- VWSTITLRYL DT F A A
- ra P L W

fig. 1-7. Spectrum for hydrogen atom as detived from Bohr atomic
model. The existence of the quantum numbers / emerges from a discussion
.of elliptica! orbits. The lines connecting enetgy levels represent the domi-

The Bohr angular momentum guentization condition reads

R

17

{1-42)

It is also very convenient to introduce the dimensionless *‘fine structure constant”

{1-43)
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which we will approximate by 1/137. In terms of these quantitie"s we find the
much simpler expressions

v Za nt A (1.44)
—_— = re=— — -
¢ n Zo me
and
z 2
E=—}m? ﬂ (1-45)
s

Notice that the radius, which has the dimensions of 2 length, is wticten in terms
of #/me, the reduced Compton wavelength of the electron, and that the energy
is written in rerms of mc2 In all atomic calculations we shall express our results
in texms of mc?, fi/me, i/me®, and mc for energy, length, time, and momentum,
respectively. Angular momenta will always appear as multiples of 4. '

Let us now calculate some of the quantities that emerge from the Bohr
theoty. We calculate

me? =2 0,51 X 105 eV
=~ .51 MeV

R
— =39 X 107 em
me

3
1.3 X 107 sec (1-46)
e
and thus obtain
(a} the radius of the lowest (» = 1) Bohr orbit is

137 i 053 ¢
= =—A 1-47
o0 Z me Z ( )

(b) the binding enecgy of the electron in the lowest Bohr orbir, that is, the
energy required to put it in a state with E = 0 (cotresponding to n = =) is

E = }mc® (Za)? = 13.62% eV (1-48)

Thus, for example, 2 cransition from the z = 1 state to the # = 2 state in hydro-
gen (Z = 1) coresponds to a change in energy of 13.6 (1 — §) eV = 102 eV.
The frequency of the emitted radiation can be calculated by converting this into
ergs, but it is more convenient to wotk this out in the form

mte?(l — 1) 3ot 1

= A ————— rad/sec
“ 2f 8 1.3 X 107%

o~ 1.5 X 10 rad/sec
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Equivalently

¢ 16xr #
=2k — = ——
w 3a? mc

= 1200 A

which lies in the ultravioler.

The success of the Bohr theory with hydrogenlike atoms gave great
impetus to further research on the “Bohr atom.” In spite of some extraordinary
achievements by Bohr'* and others, it was clear that the theory was provisional.
It said nothing abcut when the electrons would make their jumps; also the
quantization rule was restricted to periodic systems; a more general statement,
by Sommerfeld and Wilson,

[ﬁ@=»ﬁ {(1-49)

closed
path

where j is the momentum associated with the coordinate ¢, was of no help in
treating problems other than those associsted with atomic levels of hydrogen,
From the Bohr theoty emérged:

L. ‘The correspondence princeple, which, in essence states that classical physics
gesults should be contained as limiting cases of quantum mechanical results.
The limit should be reached when the “quantum numbers” are large, for ex-
ample, for large # in the Bohr atom. Once a consistent theory of quantum
‘phenomena was constructed, i autematically contained classical physics as a
Jimnit, but the principle was very helpful in guiding theoretical guesses, and led
Heisenberg to the point from which he could make his giant leap to quantum
mechanics. To illustrate how the cotrespondence principle is satisfied by the
Bohr atomic model, consider the frequency of the radiation emitred when an
electron makes a “jump’ from the orbit with quantum numbet # + 1 to the
bt with quantum number #, when » is very large. This is a good domain to ask
for the classical limit, since the angulat momentum ## is indeed much larger
n #. Classically an electron moving in 2 circular orbit with velacity # would be
expected to tadiate with the frequency of its motion, that is,

v Zac Zome  (Za)mc 1

2rr z 2meth 2ah gt

{1-50)

On the other hand, the frequency of the radiation associared with the transition
15, according to (1-31),

LR o RN
T 21rfié 2 (Za). |:112 B (m + 1)":’ (1-51)

M See S. Rozenral (ed.), Nizlr Bohr, North Holland Publishing, Amsterdam, 1967,
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which approaches v.; for # 3> 1. Note that this is a significant result, since it is
only the frequency associated with an # + 1 — # transition that cotresponds to
the fundamental classical frequency. The radiation associated with the jump
» + 2 — n has no classical counterpart even in the large » limit. We shall see in
Chapter 22 that there ate no # + 2 -= # transitions for “circular orbits” in
quantum mechanics.'® ’

2. 'The quantization of angular momentum held in other situations as well,
Its application to elliptic orbits gave a more complete picture of the specturm of
hydrogenlike atoms, and it was directly observed in the experiments of Stern
and Getlach'® in 1922,

F. The Wave-Particle Problem

The fact thar radiation exhibits both wave and patticle properties raises a
deep conceptual difficulty, as can be seen from the following considerations:

1. Our discussion of the photoelectric effect, in particular the correlation
of the number of electrons emitted with the intensity of the radiation, strongly
suggests that the intensity of electromagnetic radiation is proportional to the
number of photons emitted by the source. Let us now consider 2 Gedanken-
experimens™ in which radiation is diffracted by a rwo-slit system. Imagine that
the intensity of the soutce is reduced to the point where, on the average, one
photon per hout arrives at the screen. Note that we have to deal with entire
photons: as the Compton effect as well as the photoelectric effect show, it is not
possible to split a photon into parts with frequency « but energy less than fiw.
The dectease of intensity in the incident radiation should not affect the classical
diffraction pattern, since, in effect, we are only stretching out the rime scale on
which the transmission from the source to the photographic plate of a large
number of photons takes place. Photons that come to the plate an hour apart
cleatly cannot be correlated, and we may therefore think about this ptocess one
photon at a time. A photon, as a patricle, will presumably go thtough one shit or
the othet. If we add to our Gedankenexperiment apparatus a small monitot that

i Such transitions can oecur for elliptical orbits (noc considered here), and this is
consistent with the comrespondence principle.

16 These matters are discussed in any texctbook in modern physics {see references a
the end of this chapter). '

W A Gedankenexperiment (thought experiment) s one that may be imagined, that is,
one that is consistent with the known laws of physics, even though it may not be tech-
nicafly feasible. Thus, measuring the acceletation due o gravity on the surface of the sun
is 2 Gedankenexperiment, whereas measuting the Doppler shift of sunlight as seen from a
space ship moving with twice the velocity of light is nonsense. In Chapter 2 we shall see
how careful one must be to insist on consisrency with the laws of physics in setting up a
Gedankenexperiment.
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tells us whether the photon went through slit “'1” or slit *'2,” we can divide the
photons into two classes, associated with the two slits. For the firse class, we
could have closed down slit 2, since the photon did not go through it; for the
second ciass we could have closed down skit 1. We might thus expect that the
pattern on the photographic plate should be the same if we repeated the experi-
‘ment with one slit closed for half che rime, and the other slit closed for the other
half of the time. This, however, cannot be, since the second experiment does not
givc an interfetence patcern. Thus there is an inconsistency that will be traced to
the assumption that the presence of the monitor that tells us which slit che
photon went through does not affect the experiment, When we discuss the
Heisenberg uncertainty principle, we shali see chat the action of the monitot destroys
the interference pattern, so that there is no inconsistency. At this stage it is
sufficient to point out that when there is no monitor, each photon acts as a
wave, and it does not make sense to ask which slit the photon went through.
Presumably, we can still speak of an average intensity of radiation at each slit:
#this must mean that for individual photons we can only speak of a probability of
going through one slit or anaother,

2. The notion of probability must again be invoked in understanding the
: ssage of polarized radiation through an analyzer. As is well known, a beam of
fadiation of intensity Io will be attenuated to Io cos? @, whete o is che angle
veen the axis of the polatizer and that of the analyzer. In terms of single
ons that are indivisible, such an attenuation is only explainable if we state
2 given phozon will either go through or be blocked by the system, with a
pbability of transmission governed by the construction of the apparatus,
at is, by the angle o
3. In che same way, consider radiation from a distant star. The star is the
source of a spherical wive of electromagnetic field excitation, spreading with
locity ¢. In terms of individual photons it is not sensible to think of the
photon as spread thinly over a sphere of radius ¢ (whete ¢ is the time since the
oton was emitted), since the collapse of that photon to a single point on a
otographic plate, ot on the retina of the eye, would violate common sense, if it
- Were “really” happening. We may howevet interpret the spherical distribution as
ving us the probability of finding a photon at a given solid angle.

4. Sometimes it is possible to interprer a given expetiment both in
icle and in wave language, buc then a nonciassical aspect creeps in elsewhere.
Dicke and Witrke'® have proposed the following Gedankenexperiment (Fig.
8).-Consider a cylindrical bird cage with the bars spaced regularly, and spacing

4= 2g—— ¢

* *R, H. Dicke and J. P. Win:k'e, Introdaciion to Quantum Mechanics, Addison-Wesley,
Reading, Mass,, 1960.
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Tig. 1-8. End view of Dicke-Wittke “cage” showing
equally spaced bars and geometrical quantities con-
nected with it.

whete R is the radius of the cylinder and N is the number of bars. Consider
radiation emitted from a soutce placed on the axis of the cylinder. The bars act
as a diffraction grating. If the beam emerges at an angle @ with the original
ditection, we have maximum intensity if the angle and the wavelength are

related by
asin § = n n=1,2,3%-...)

thar is,
27K sin @

= 1-52
Nn (1-52)

We could also interpret the intensity peak by assuming that the particles scattered
through an angle @ off the bars of the bird cage. The momentum transferred to
the cage is p sin 8 and hence the angular momenturn transferred to the cage is

L= pRsind (1-53)
If we now make the De Broglie association, p = 2xf/\ we obrain
2rhN
= ‘w _L-Rsin6=Nnﬂ (1-34)
27R sin @

that is, angulat momentum is quantized! The facror N is associated with the fact
that the bird cage looks the same when it is rotated through an angle 2a/N, as
will become clear later.
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In 1925 the modern theory of quantum mechanics started with the work of
Heisenberg, Born, Jordan, Schiédinger and Dirac. This theoty provides a way of
reconciling all of the conflicting concepts at the cost of making us abandon a
cettain amount of classical thinking. It is one of the joys of being a studenr of
physics to be able to appreciate this beautiful theory aad the menumental
advances in our understanding the properties of matter that the theory enabed
us to make.

Problems

1. Prove the telation (1-1) between the energy density in a cavity and the
- - emissive power. [Hint. To do so, look at the figure. The shaded volume element

4

/
/
Y
4
4
r
/
7
/
0/
f
— .
a4

is of magnitude v Jr sin @ 0 &p = 4V where r is the distance to the origin (at
the aperture of area 4A), § is the angle with the vercical and ¢ is the azimuthal
angle about the perpendicular axis through the opening. The energy contained
i the volume element is 4V multiplied by the energy density. The radiation is
isottopic, so that what emerges is given by the solid angle 44 cos 8/4rr? muiti-
plied by the energy. This is to be integrated over the angles ¢ and 0 and, if the
flow of radiation in time Az is wanted, over 4 from 0 o cAsr—the distance from
* which the radiation will excape in the given time interval |

2. Use (1-1) and (1-12) to obtain a formula‘for the rotal rate of radiation
per unit area of a black body. Assume that the sun radiates as a black body.
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You are given the radius of the sun Ry = 7 X 10' cm, the average distance of
the sun to the earth dg = 1.5 X 10% cm, and the solar constant, the amount of
energy falling on the earth when the sun is ovethead 1.4 X 10% ergs/cm? sec.
Use this information to estimate the surface temperature of the sun.

3, Given (1-9), calculate the cnergy density in a wavelength interval
AN Use your expression to calculate the value of A = Apay, for which this
density is maximal. Show that fp.x is of the form &/T, calculate &, and use your
estimate of the sun’s surface remperature to calculare Mas for solar radiation.
[#int. In calculating b you will need the solution x of the equation (5 — x) =
5¢-=. Solve this graphically or by a successive approximation method, in which
you first weite x = 5 — ¢ With ¢ & 1]

4. How omuch of the sun’s energy is radiated in the range of wavelengths
4000 A-7000 A? Use the T estimated in problem 1. Plot the energy density on
graph paper ta abtain the numerical result.

5. There is some experimental evidence that the universe contains black
body radiation cottesponding to an equilibrium tempetature of 3°K. Calculate
the energy of 1 photon whose wavelength is Amax cottesponding to chis tem-
petature.

6. Ultravioler light of wavelength 3500 A falls on 2 potassium sutface.
The maximum energy of the photoelectrons is 1.6 eV. What is the work function
of potassium?

7. The maximum energy of photoelectrons from aluminum is 2.3 eV for
radiation of 20004 and 0.90 €V for radiation of 3130 A. Use this data to calculate
Planck’s constant and the work function of aluminum.

8. A 100 MeV photon collides with a proton that is at rest. What is the
maximum possible energy loss for the photon?

9. A 100 keV photon collides with an electron at rest. It is scattered
through 90°. What is its energy aftet the collision? What is the kinetic energy in
&V of the electron after the collision, and what is the ditection of its recoil?

10. An electron of energy 100 MeV collides with a photon of wavelength
3% 10" A (corresponding to the universal background of black body radiation).
What is the maximum energy loss suffered by the electron?

11. A beam of X rays is scattered by electrons at rest. What is the energy of
the X rays if the wavelength of the X rays scattered at G0° to the beam axis is
0.035 A? '

12. A nitrogen nucleus (mass 2= 14 X proton mass) emits a photon of
encrgy 6.2 MeV. If the nucleus is initially at rest, what is the recoil enetgy of the
nucleus in eV?

13. What is the DeBroglie wavelength of {a) a 1 eV electon, (b} a
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10 MeV proton, (¢) a 100 MeV electon? [caution! use the relativistic energy
formula), (d) a thermal neutron? {defined as a neutron whose kinetic energy
is 34T/2 with T = 300°K).

14. Consider a crystal with planar spacing 3.2 A. What order of magnitude
of energies would one need for (a) electrons, (b) helium nuclei (mass = 4 X
proton mass) to observe up to 3 interference maxima?

15, The smallest separation tesolvable by a microscope is of the ordet of
§ magnitude of the wavelength used. What energy electrons would one need in
" an electron microscope to resolve separations of (a) 150 1&, (b) s A2

16, If one assumes that in a stationary state of the hydrogen atom the
electron fits into a circular orbit with an integral number of wavelengths, one
<an -reproduce the results of the Bohr theory, Work this out.

17. The distance between adjacent planes in a crystal are to be measured.
If X rays of wavelength 0.5 A are detecred atan angle of 5°, what is the spacing?
At what angle will the second maximum occur?

18. Use the Bohr quantization rules to calculate the energy levels for 2
hatmonic oscillator, for which the energy is p*/2m + mw?ri/2, that is, the
force is mw?r. Restrict yourself to circular orbits. What is the analog of the
Rydberg formula? Show that the correspondence principle is satisfied for all
values of the quantum number # used in quantizing the angular momentum.

i 19. Use the Bohr quantization rules to calculate the energy states for a
fpotential given by

Vi) = Vo(')k
a

ith £ very large. Sketch the form of the potential and show thar the enetgy
iues approach B, =~ Cn?

. 20. The power, that is, the energy radiated by an accelerated charge ¢ is
‘classically given by the formule
: -
= —— &% erg/sec
30

where 2 is the acceleration. In a circular orbit # = #2/r. Calculate the power
fadiated by an electzon in a Bohr arbit chatacterized by the quantum number .
When # is very large, this should agree with a proper quantum mechanical
result according to the cotrespondence principle.

21. The decay rate for an electron in an erbit may be defined to be the
power radiated, P, divided by the energy emitted in the decay. Use the Bohr
theory exptession for the energy radiated, and the expgession for P from problem
¥ 20 to calculate the “correspondence™ value of the decay rate when the electron
" makes a transition from orbit #°to orbir # — 1. What is the value of this decay
tate when n = 2? (This will not agree exacdy with the true quantum theory
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result, since the correspondence ptinciple will not hold for such small values of
the quantum number.) What is the decay rate when the cransition is from an
otbit # to an otbit # — m? What is the lifetime = (decay rate)1?

22. The dassical energy of a plane rotator is given by
E = L¥2I

where L is the angular momentum and I is the moment of inertia. Apply the
Bol quantization rules to obrain the enetgy levels of the rotator. If the Bohr
ftcﬁuency condition is assumed for the radiation in transitions from states
labeled by ; to states labeled by 7, show that (a) the correspondence principle
holds, and (b) that it implies that only transitions Az = =£1 should occur.

23. Molecules sometimes behave like rotators, If rotational spectra are
chatacterized by radiation -of wavelength of order 107 f&, and this is used to
estimate interatomic distances in 2 molecule like Ha, whar kind of separations
(in i) are obtained?
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chapter 2

Wave Packets and
the Uncertajnty Relations

Quantum mechanics provides us with an understanding of all of the -
phenomena discussed in Chapter 1. It is indispensable to the understanding of
atoms, molecules, atomic nuclei, and aggregates of these. We will approach the
study of quantum mechanics through the Schrédinger equation and the appro-
priate interpretation of its solutions.! There is no way of deriving this equation
from classical physics, since it lies outside the realm of classical physics, It can
only be guessed, which is what Schrodinger did, following the earlier insights of
De Broglie. We will motivate the guess somewhat differently, by seeing how one
might try to reconcile the wave and particle properties of electrons.

It is difficult to think of configurations of particles that somehow simulate
wave behavior. This is why the difftaction experiments of Fresnel and Young led
. to the unanimous acceptance of the wave theory of light. On the other hand, it is
* possible to imagine configurations of waves that are very localized. (A clap of
.thunder is an example of a superposition of waves leading to an effect localized
in time.) Such localized ““wave packets” can be achieved by superposing waves
with different frequencies in a special way, so that they interfers with each other
almost completely outside of a given spatial region. The technical tools for
doing this involve Fourier integtals, and Appendix A summarizes them for the
reader who is familiar with Poutier series and who does not insist on mathe-
macical rigor. ‘

As an example, consider the function defined by

por = [ giny e (21)

.
! A different approach can be found in R. P. Feynman, R. B. Leighton, and M. Szands,
The Feynman Lectures an Physics, Vol. [1I, Addison-Wesley, Reading, Mass., 1964,

3T
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The real part of f(x) is given by f dk g(k) cos kx, and this is 2 linear supet-

position of waves of wavelength A = 2x/E, since for a given £ the wave repro-
duces itself when x changes to x + 2x/k.
Choose

g(é) = gatk—k) (2-2)

The integral can be done: with & = £ — & we have

f{x) _ [eu dkg(k) gilk—ky)z gikeT

—

o
ik f db g2 ekt

—o
© 4

R [ B! —alk =Gz’ p— (s i)
e

where in the last step we have completed squares. It is justified to let £ —
{ix/2a) = q and still keep the integral along the real axis.? Making use of

f T dh et = \/’—r (2-3)
—a 0

f(x) - JI gikes g2/ ta0) (2-4)

[+

- we obtain

The factor ¢ is known as a “phase factor,” since |¢%*|* = 1. Thus the abso-
luze square of f{x) is

f)i2 = L ' @)

This function shows a peaking that can be very pronounced when is chosen to
be small. It represents a function localized about x = 0, with 2 width of the
otder 24/ 2, since when x = == +/2c, the function drops off to 1/¢ of its peak
value. The width in x-space is cosrelated with that in £-space. The square of g(&)
is a function peaked abour & with width 2/4/2a. Thete is a reciprocity here:
a function strongly localized in x is broad in £ and vice versa. The product of
the two “widths” is

.2
Ab Ax ~ 5=+ 24/2a = 4 (2-6}
-\/ 2
2 The reader familiar with the theory of complex variables will have no trouble con-
vincing himself of this.
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The actual value of the numetical constant is not important; what mattets is
that it is independent of o, Thisis a general property of functions thar are Fourier
transforms of each other (Fig. 2.1). We represent it by the formula

Ax Ak 2 O(1) (2-7)

‘where Ax and Ak are the “widths” of the two distributions, and we imply by
O(1) thar this is a number that may depend on the functions that we are dealing
with, bur is not significantly smaller than 1. It is imporsible to make both Ax and Ak
small. This is a general feature of wave packets, but we shall soon see that it has
some very deep implications for quantum mechanics.

In Eq. 2-1 we considered a function f{x) that is made up of a continuous
superposition of simple waves ¢%2. How will such a wave packet propagate in

glk}

nin
n|&

fa)

fix)

"\ N\ .
~ NV S

Fig. 2-1. Relation berween Wave packet and its Fourier transform for 2
square-shaped wave packet.
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cime? The answer to that depends on how the individual waves propagate. In
general we shall write for the simple plane wave {so calied because it only has a
spatial variation in %, but not in y or z} the form

eika:—iut (2_3)

Here w = 2wv is the angular frequency. The quantity k is related 1o the wave-
length by & = 2w /\:so that we may wiite for the simple wave another form

£,ﬂ'riT_(:\:,’)\)—:f!] (2_9)

If we are consideting the propagation of a light wave in 2 vacuum, then there is
2 simple relation berween » and 1/h, namely, ¥ = ¢/, so that the simpie wave
becomes

eZti(z—ci)f)x - Eik(:—-c!)

If we now take the superposition, with amplitude 2{#) of these simple waves, we
get, at time #,

Flx, 1) = f " B glh) ¥ = flx — o) (2-10)

This is the same shape that we started from, except that instead of being localized
at x = 0, it is now localized at x — ¢ = 0. Thus a wave packet of light waves
propagates without distortion with velocity ¢, the velocity of light.

We, however, are concerned with waves that are supposed to describe
particles, and we may not, therefore, require that w = ke In general « will be a
funcrion of &, so that

f(x,,) = fdk g(k) gibr—iu (k) . {2-11)

For the time being, we do not know what the form of w(k) is, but we shall ty to
determine it from the requirement that f{x.#) tesemble a freely moving classical
particle. :

Let us considet a wave packet that is strongly localized in k-space, abour a
value k. This would correspond to a choice like (2-2) with a large. It is true
that this will pot tepresent an f(x) sharply localized in x-space, but our calculz-
tion will be easier, and we are, after all, still trying to make incelligent guesses.
Since the integral in (2-11) will center around & = ks, we expand w(k) about &
and assume that w(£) is not a very rapidly varying function of k. Thus we wiite

w(k) = wlbs) + (& — &) (%Z—)k + ; (& — éu)“’(j:: )h (2-12)

Then, using the form {2-2) for definiteness, and writing & — ko = E, we get

[l = gihom et f i ek gt N g Tl (213)
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Aside from the phase factor in front, the x and # coardinates appear in a form that
suongly snggests that the velocity of propagation of the packer, the grosp
velocity, is?

dw.
g = (E)k, (2-14)
Thus, defining )
1 { &
2 ( P )h = (@13)
we have
flx,f) = ¢illrution [ AL P ) (e Bk {2-16)

This is just the integral that led to (2-4), so that replacing x by x — 7, and a
by « 4 #82, we get

- e
_ gD Atartifity]
13

= pilkm—olit
fli) = ethormecet (a+iﬁ

. and the absolute square of this function is

.r2 1/2 +§‘3

2 - — [ lx— 08" 120 1 -

| A, )| = (az T 3*:*) eletemr i (2-17)

This represents a wave packet whose peak is traveling with velocity vy, but it 7

does not have a definite width: the quantity that was « at z = 0 now becomes
e + (8%%/a), thau s, #he packet is spreading. Since the width is proportional to

2\ 1/ 2
(o4 valo 1 22)
4

a*

. the rate of spreading will be small if o is large, that is, if the packet is spatially
. large to begin with.

The most important tesult is thar if (2-11) is to tepresent a particle with
- momentum p and kinetic energy p*/2m, then we must require that

s p

& m

vy =

(2-18)

? This is certainly in agreement with whart we found in the special case of light propa-

gation, where @ = kc. The argument used more generally depends on the fact that the peak

of 2 packet will rend to be where the phase £x — wf bas a minimum as a function of £, that is,
) i

h do t=20
where x 7 = 0.
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If we further make the association that _
E = fw (2-19)

suggested by the quantum relation for radiation, so that

2

= 7 2-20
7 2mh (2-20)
then consistency demands that we make the association

2r b4

b= —=— =21

xR (z-21)
first derived in 2 somewhat similar way by De Broglie.
In terms of p, the expression (2-11) can be rewritten in the form

1
— — | 4 i pr—E) Mk 2.22
W) = s [ oo @22)

"The wave packet ¢ (x,f) is a general solution of the parcial differential equation

; W(L’I) = 7] _/ i(pz—E¢)jk
ih o ik dpp(p) Ee ¢

1 PZ i(pr—EE
\/aﬁf 4 40) 5, <N

7 o)
m Ot

il

(2.23)

provided, as we have done above, we describe the motion of the “'particle” in a
potential-free region, where E = p?/2m. It is this equation, and its generalization
to the case of a particle moving in a potential, that represents the impofrant
abstraction from the arguments outlined above. It should be stressed that the
equation represents 4 guess: there was no justification on the basis of classical
. physics for the replacement of w by E/&, nor for the replacement of the wave
number £ by p/k.

We must still face the difficulty of the spreading of the wave packets. If we
consider a Gawssian packet (2-17), we see that no marter how large « is, there will
be 2 time when the spreading will become noticeable. This is i contradicrion
with experience, which shows very cleatly that nuclei, for example, that are very
tiny, have not changed during 2 period of 3 X 10° years (10 sec). We shall see
in Chaper 3 that the notions of probability, hinted at in Chaprer i, play a role
here, and the spreading really refers to a growing probability that the particle is
far from whete it was localized at £ = 0.

One of the most important qualitative observations that we made in our
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wave packet discussion is the reciprocity relation between the widths in x- and
k-space

ARAx Z 1 (2-24)

If we n;nltiply this by & and use #i# = p, we obtain the Heisenberg uncerminey
relations . s

ApAx = R (2-25)

Since the width represents a region in which a parricle is likely to be in x-space or
in momentum space, (2-25) states thar if we try to construct a highly locatized
wave packet in x-space, then it is impossible to associate a well-defined momen-
tum with it, in contrast with what is taken for granted in classical physics. By the
same token, a wave packet characterized by a momentum defined within narrow
limits must be spatially very broad. This limitation is one that is imposed on the
classical description, which insists on being able to specify both position and
momeatum. In quantum physics position and momentum, just like particle
behavior and wave aspects of a system, are complementary properties of che
system, and the theory does not admit the possibility of an experiment in which
both could be escablished simultancously. The smallness of # guarantees that
only for microscopic systems will the usual notions of classical physics fail. For
example, for a dust particle of mass 104 gm moving with a velocity of 10*
cm/sec with an uncerminty in the product of cne part in a million implies
, Ap ~ 107 and thus Ax ~ 1072 ¢, which is 107 times smaller than the radius
of a proton! This is not so for an electron in a Bohr otbit, It we take Ap ~ p o~
mcer/n, then Ax ~ fin/meer, of the order of magnitude of the radii of the orbits.
: In what follows we will discuss a number of Gedankenexperiments in
. which we will show in detail how the wave-particle duality acts to conspire to
- prohibit a violation of the relation (2-25).

(a) Measurement of position of an electron. Consider the experimental set up
~in Fig. 2.2, whose purpose is to measure che position of an electron. The clec-
. trons are in a beam having well-defined momentum p, and moving in the positive
x direction. The mictoscope (lens + screen) is to be used 1o see where the elec-
tron is located by observing the light that is scattered off the electron. We shine
E. ligh: along the negative x-axis; z particular electron will scatter a particular
- photcn, and the latter recoils through the microscope. The resolution of the
microscope, that is, the precision with which the elecron can be localized is
known from optics. It is

A
Ax o~ (2-26)
sin 4
L3
wherte A is the waveleagth of the light. :
It would appear that by making X smail ¢nough, and by making sin ¢ large, Ax -

can be made a5 small as desired. This, we will now show, can only be done at the
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Fig. 2-2. Schematic drawing of the Heisenberg microsocpe for the
measurement of electron position.

expense of losing information about the x-component of the electron momen-
tum. Quantum theoty tells us that what registers on the screen behind the lens
are really individual photons that got there beczuse they scattered off the elec-
trons. The direction of the photon after scattering is undetermined within the
angle subtended by the aperture. Hence the magnitude of the recoil momentum
of the electron is uncertain by

hy
Ap.~2— sind (2-27)
¢
Hence

h b
Apy Ax ~ 2 nd sin ¢ -.—— ~ 4doft (2-28)
¢ sin ¢

Can we get around this difficalty? Afrer all, the direction of the photon is
cortelated with its momentum, and if we could somehow measure the recoil of
the screen, we could specify the photon {and hence elecrron) momentum better.
True, bur once we include the MICIOSCOPE a5 patt of the "observed’” system, we
must worry about its location, since irs momentum is (o be specified. But the
Microscope, t00, Must obey the uncertainty relation, and if its momentum is to
be specified, irs position will be less determined. The final “classical’ obsetvation
apparatus will always be faced with the indeterminacy.

(b) The two-slit experiment. In Chapter 1 we suggested chat the interference
pattern observed in the passage of 20 electron? through two slits was logically

1We actually discussed photons, But the difficulty is the same for electrons, which
are also diffracted.
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incompatible with our being able to know which slic the electron went through,

a5 such knowledge would imply that the pattera is a supetposition of electrons
fcdrm'ng from one slit ar the other, This, however, caanot give an intetference
: patern. We may use the uncertzinty telation to show thar a “monitor” that
identifies the slits of passage will destroy che interference parern. Ler the slits
be separated by 2 distance 2, and let the distance from the slits to the screen be 4.
The condition for constructive intetference is

sinfd = n?—t (2-29)
&
50 thar the distance berween adjacent maxima on the screen is 4 sin by —
dsin’6, = d\/a. Consider, now a monitor that determines the position of ag
electron just behind the screen to an accuracy Ay < #/2, that is, it tells us which
slit the electron went through (Fig. 2.3). In doing $0, it must impart to the
electron 2 momentum in the ¥ direction . whose amount is imprecise, with

2h
Apy > 7 (2-30)
Hence
A 2 h 2A
b 2R = — {2-31)
b ap a

Such an uncertainty introduces an indeterminacy in the position of the electron ac
the screen, whose magnitude is 2Ad/ez, at the very least. This, however, is larger

Ny
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Fig. 2-3. The two-slit experiment with monitor.
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than the spacing between maxima, so we conclude that a working monitor will -

wipe out the interference pattetn, and thete is no logical contradiction. Con-
versely, we could, of course, atgue that logical consistency demanded chat

Apy Ay > h (2-32)

() The "reality” of orbits i the Bobr atom. As noted in Chapter 1, the Bohr
atomic mode! deals with orbits whose radii are given by R. = fin*/eme. Thus an
experiment designed to measure the outlines of a given orbir must be such thata
position medsurement of the electron in the atom is dene with an accuracy

2hin

ami

Ax K R, — R = - (2-33)
This implies an uncontrollable momentum transfer to the electron that is of
magnitade Ap > mea/2n. This implies an uncerrainty in the encrgy of the
electron of magnitude

mcee o 1 miat

w2 (2-34)

a5
n
that is, much larger than-the binding of the electron in the orbit. Thus such a
measurement, as likely as not, will kick the election ourt of the orbit, so that no
such mapping of the otbir is possible.
(d) The energy-time uncertainty refation. If we take the relation {2-25) and
write it in the form

pp A
m b

we may interpret the fist factor as a measure of the uncertaincy in the energy of
the system, and the second factor, Ax/v, as a measure of Az, an uncettainty in its
localizability in time. This suggests the energy-time uncerraincy relation

AEAt Z h (2-35)

Such a relation might also be deduced from the form of the wave packet (2-22)
since E and ¢ appear in the same reciprocal relation as g and x, and it is also
suggested by the theory of relativity, since space and time, like momentum and
energy are intimarely copnected with each other.® Actually, in nonrelativistic
quantum mechanics, space and time play a somewhat differenc role, and whereas
we shall be able to derive (2-23) from the formalism of quantum mechanics,
this is not true of (2-35). Nevertheless the energy-time uncertainty relation is as
much a part of the gualitative structure of quanrum mechanics as (2-25).

s Both (e, x) and (E/e, p} are four-vectors that wansform among themselves under
Lorentz ransformations.
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In spite of his fundamental conttibutions to the development of quantum
mechanics, Einstein always felt uneasy about its implications, and at the Solvay
Congress of 1930° he suggested a Gedankenexperiment that apparently avoided
the limitations suggested by (2-35). Einstein suggested that a box containing
radiation have a shutter controlled by a clock within the box. The shutter
mechanism could be arranged such that a hole is opened for zn arbitrarily short
time Az, The enetgy of the photon escaping from the box could be determined
vety accutately by weighing the box before and after the opening of the shurter,

Bohr's rebuttal of the argument is 2 beautiful illuseration of the require-
ment that a Gedankenexperiment must conform to the laws of physics. Taking
into consideration the apparatus shown in Fig. 2-4, Bohr made the following
points:

1. A weighing implies the reading of 2 scale pointer with an accuracy Ax.
This implies an uncerainty in the momentum of the box given by Ap = fi/Ax.

2. Ifa change of mass Am is to be detected, the weighing must take a time
T, that is long enough so that the impulse due to the change in mass, that s,
£T Am (g = acceletation due to Bravity) s much larger than Ap, that is,

T Am 3> R/Ax {2-36)

3. The well-established equivalence principle’ implies that a change in the
vertical position Ax in a gravitational field implies a change in the rate of the
dock, given by

gg = g%‘ | (2-37)
This yields
AT & B
T et gT Am
thar s,
Am AT = AEAT > & (2-38)

This shows that the energy-time uncertainty relation is maintained,
_ - The uncereainty relations may be used to make rough numerical estimates
in microscopic physics. Let us illustrate this wich several examples, che first of

% See the beautiful essay by Niels Bohr, “Discussion with Einstein on Epistemclogical
Problems in Aromic Physics,” which appeated in Asmic Physics and Human Knowledge,
John Wiley & Sons (1958), ..

T The equivalence principle is discussed in the Special Topics section 2 at the end of
this bock. It is amusing in this context thar the principle was formulated by Einstein!
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Fig. 2-4. Quasi-realistic drawing of Finstein experiment designed ro show
‘viclation of AE A > hrelation. Reprinted from Niels Bohr, Astemrc Physics
and Human Knowledge, John Wiley (1938), by permission of North Holland
Publishing Company, Amsterdam.

which is the hydrogen atom. If we say that the electron’s position inside the
atom is unknown, then, if v is its radial coordinate

pr~1h (2-39)
This allows us to express the enetgy in rerms of #:

gt _ €
2m r
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h? e? '
= _f 2
2mr? r (2-40)
The minimum value of the energy is cbtained from
OF i et
— == 41— =9
or mr? + r
that is,
2 1
r=—=— (2-41)
me® mee
and the corresponding value of E is
1
E= — N mete® (2-42)

The fact that we obrained the exact value of the energy is, of course, a swindle,
 since we could equally well have written pr~ b instead of (2-39), and we would
then have obtained a different result. The value of E would, however, have
differed from the correct value only by a numerical constant, and the general
order of magnitude would still have been the same. "The main point is that in
‘contrast to classical theory, the energy is bounded from below because of the
“uncerczinty principle: an increase in the (negative) potential enetgy, obrained
by decreasing r, that is, localizing the electron closer 10 the nucleus catries with
it the necessity for increasing the kinetic energy.
As another example, consider the problem of nuclear forces. These have
~the mnge of the order of one fermi, that is, 10~% cin. This implies that p ~#/r ~
107! gm cm/sec. The kinetic energy corresponding to this momentum is

Pﬂ 19—28
2M ~ 32X 1?“

~ 3 X 107 ergs (2-43)

whete M is the nucleon (proton or neutron) mass, which is 1.6 X 10— gm.
Since the potential chat gives rise to the binding must more than compensate
for this we require that ‘

V]| ~3X% 1075 ergs ~ 20 MeV (2-44)

Again, this is only a rough order of magnitude, but it does indicate chat the
portential energy is to be measured in MeV rather than in €V, as in atoms. '

Yer another illustration comes from the Yukawa meson theory of nuclear
forces. In 1935 Yukawa proposed that the nucleag, force arises thtough the
emission of 2 new quantum, the pi-meson (also called pion), by one of the
nucleons, and its absorption by%the other.? If the mass of the quantum is denoted

4 This is discussed briefly in the Special Topics section 5 on the Yukawa theory.
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by g, then its emission introduces an energy imbalance AE ~ uc?, which can
only take place for a time Ar ~ fi/E ~ /pc’. The range cotresponding to a
particie traveling for this time is of the order of (AT ~ A/uc. If we take for the
range ro = 1.4 X 1071 cm, then we find that

fe 1077 X 3 X 100
re  LAM 1
~ 130 MeV {2-45)

pe? = ergs

When the pion was finally discovered, it was found that this estitmate - was
remarkably accurate, since for the pion pc® =~ 140 MeV,

In summarty, oul tentative attempt to wed wave and particle properties
consistent with experiment in the most naive way, has led us to an uncestainty
in the description of atomic phenomena at the classical level, and this un-
certainty is both necessary for a consistent description af (Gedanken) experi-
ments, and in accord with what is observed.

Problems

1. Consider a wave packet defined by (2-1) with g{#) given by

glk) = 0 E< —K
-N -K<k <K
=0 K<k

{a) Find the form f(x).
{(b) Find the value of N for which

[ e =1

—on

{c) How is this related to the choice of N for which

[m dk|glB)|? = ﬁ

{(d) Show that a reasonable definition of Ax for your answer to (a) yields

AkAx > 1
independent of the value of K,
2. Given that .
N
&) = —
g( ) k2 + az
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calculate the form of f(x). Again, plot the twe functions and show that

AkAx > 1
independent of your choice of a.

3. Consider the problem of the spreading of a Gaussien wave packet fora
free particle, where the relation

holds, Use (2-17) to calculate the fracriona] change in the size of the wave
packet in one second, if

(a) the packer represents an electron, with the wave packet having a size
of 10~ cm; 10~* cm.

(b) the packet tepresents an object of mass 1 gm and has size 1 cm,
Tt will be convenient to express the width in units of #/me, where m is the
mass of the particle represented by the packer.

4. A beam of electrons is to be fired over a distance of 10* km, If the size
of the initial packet is 1 mm, what will be jts size upon artival, if its kinetic
encigy is (a) 13.6 eV, (b) 100 MeV?
(Caution. The relation between k

' inetic enetgy and momentum s not
always KE. = p*/2m1)

5. The relation between the wave

length and the frequency in a wave
guide is given by

'
:/l” -t

What is the group velocity of such waves?

A=

6. For surface tension waves in shallow water, the relation between
frequency and wavelength is given by

(21r Lr2
v={—
e

" where T is the surface tension and » the density, What is the group velocity of
the waves, and its relation to the phase velocity, defined to be v, = As? For
gravity waves (deep water), the relation is given by

1z s
y . \2mh

whar are the group and phase velocities?
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7. Use the uncertainty relation to estimate the ground state energy of a
harmonic oscillator. The energy is given by

2

1
P e

2m 2

& Use the value of the “lifetime’’ pf an electron in an # = 2 Bohr obit,

calculated in Problem 21 of Chapter 1, to estimate the uncertainty in the
énergy of the # = 2 energy level. How does ic compare with the energy of that
level? '

9. Nuclei, typically of size 107** cm, frequently emit electrons, with
typical enesgies of 1-10 MeV. Use the uncertainty principle to show that
clectrons of energy 1 MeV could not be contained in the. nucleus before the
decay.

10. The apparatus sketched below appears o allow a violation of the
uncertainty refation. The lateral location can be determined with accuracy
Ay ~ &, and the transvetse momentum of the incident beam can be made as
small as possible by making . atbitarily lacge. Analyze the apparatus in detail,
point out the hidden assumptions made in the above, and show that the un-
certainty relacion is not violated. :

____________________________________

f LL >>d
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chapter 3

Tbé Schrédinger Wave Equation

In Chapter 2 we obtained a partial differential equation satisfied by a
wave packet that, within certain approximations, described a freely moving
“patticle.” From this point we shall take this equarion

¥ 12 O%(x s
A B Oy -
3 2m Ot
as the correcr equation for the description of 2 free patticle. Inverting the
sequence that led to (2-23), we see that the most genera] solution of this equation
is K

Ylxg) = \—/fﬁ dp B(p) etre—iramyam (3:2)

[The reason for the normalization factor in front of the integral appears in (3.26).]

Befote turning to the crucial point of interpreting the meaning of the solution

¥(x.4) of this equation, we draw attention to the fact that the equation is of first

order in the time-derivative, This implies that once the initial value of ¥, namely, *
¥(x,0), is given, its values at zll other times can be found. This is evident from

the form of the equation as seen by a digital computer!

73
Pl + A = g(x) + ?z; Eﬁ%‘? Ar (3-3)

or from che form of the most general solution. Given {x,0), the function @(p)
may be found from (3-2), with = 0:

¥(x,0) = V—;T—ﬁ]dp () eirait (3-4)

»
may be inverted, and once #(p} is known, the solution is known for all values
v

! For a discrete mesh, ay(x, #) /87 must be seplaced by [¥(x, £+ Ar) — $(x.0)] /A;; with
Ar small bart not vanishing.
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of . Note that there is no "“uncertainty” in the differential equation: once the
initia! state of the wave packet is specified—and thete are, so far, no restrictions
on ${x,0)—then that wave packet is completely specified at all later times.

In searching for an interpretation for y(x, /) we must bear in mind (1) that
¥{x, £} is in general a complex function [e.2. {2-16)], and (2) that the function
|#{%, ) is large where the patticle is supposed to be, and small elsewhere. [t
also has associated with it the feature of spreading, discussed in Chapter 2.
The suggestion of Max Botn that

Plx, ) dx = [¥(x, ] dx (3-5)
define the probability that the particle described by the wave fancsion Y(x, §) may be

found besween x and x + dx at time ¥ tutns out to provide the cotrect interpretation
of the wave function. The probability density P(x, #) is teal, is Jarge where the
particle is supposed to be, and its spreading does not imply that 2 particular
particle is spreading; 2ll it means is that as time goes by, one is less likely to
find the pasticle where one put it at £ = 0.

For this interpretation to hold, we must require thar

[ pie= 66
since the particle must be somewhere. In a linear equation like (3-1), the solution
¥(x, §) may be multiplied by a constant, and it stll remains 2 solution. Thus
(3-6) restticts the sclutions ¥(x, 1) to a class of functions that are sguare integrable.
We shall see below that it is enough to requirg that

f dx|§lx, 0)* < = 37
that is, the initial state wave [functions must be square insegrable. With an infinite
integrarion interval this means that $(x, 0) must go to zeto at infinity at least as
fast as x~1/*~* whete ¢ can be arbitrarily small, but must be positive. We shall
also require that the wave functions #(x, £) be continupas in X. s

Since |¢(x, #)|? is the physically significant quanticy, it would appear that
the phase of the solution of the equation is somehow unimportant, That is
wrong! Since the equation (3-1) is linear, if $1(x, £) and ¥s(x, £) are solutions,
50 15

Hx, £} = awnlx, H + anlx, 9 (3-8)

where oy and a are arbitrary complex numbers. Clearly the absolute squate of
(x, 1) in {3-8) will depend crucially on the relstive phases of the two parts. A
more physical way of seeing this is to note that as in classical optics, che inter-
ference patrern is derermined by the phase relation between the two pars of the
wave function zssociated with the two slits in a two-slit experiment. It is, of
course, true that an szerell phase factor can be ignored.
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We now show that the condition (3-6), imposed ats = 0, holds true for all
times. We need Eq. 3-1 and its complex conjugace

o Ni(x) R At
A T T I e (3-9)
Nov;
2 _ + ¥
or Plx,5) = ot vy ¢
(B, E
A\ 2m dx _Zmy"Ox?

o[ & *%_OJJ*
= _a[ﬂ ('p Ox ax U’)]

If we define the flux by

o= g (-2 (510
we see that
a_E: Px,n) + %j{x, H=0 N (3-11)
Integratin:g, we find thar
Efmde(x,t)=—/mdx3j(x.f)=0 (312)
ot _ —w  Ox

“since for square integrable functions, A%, ) vanishes at infinity. Incidentally,
bad we allowed discontinuities in ¥(x}, we would have been led to dela-func-
tion® singularities in the flux, and hence in the ptobability density, which is
unacceptable in 2 physically observable quantity,

The relation (3-11) is a conservation Jaw. It expresses the fact that a change

. in the density in a region in x is compensated by a net change in flux into that

region

d [ b D
=2 P = - hay
o> '/; dx Plx, 1) /ﬂ dx 05_ Flx, )

= fla, 1) — j(b, ) (3-13)

r .

* See Appendix A for a discussion of delra functions.
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The definition of P(x, #), f(x, £} and the conservation law are maintained if the
equation (3-1) is changed o

L, Odx ) A o(x.n)
a2t - o

o S s Y@  (3-14)

provided that V(x) is real. This is important, since we will argue later that (3-14)}
is the Schrddinger equation for a particle in a potential ¥(x). The generalizadon
to three dimensions is straightforward, Eq. 3-14 becomes

S N N (i K E_)
m RIS e - aw T o T o )Y 7
+ Vix, 3, 2 #x, 3,29
that is,
ﬁﬂ
iﬁw(r’ a__ 2 vap(r, 1) + V) ¢(x, #) (3-15)
a{' 2m
and the generalization of (3-11) reads
fs] . .
> Pr,s) +V:j,H=0 (3-16)
where
P(r,5) = ly(r. B]* (317
and

i n = 5,,; b *r, 1) PR(r, §) — Vg, 7) ¥r, 1] (3-18)

Given the probability density P(x, #), expectation values of functions of x
may be calculated. In general, we have®

) = j dx () Plx, 1) = f I ) f) W ) (319)

This only has meaning if the integtal converges. The expression daes not help
us if we want to calculate the expectation value of the momentum, since we do
_ pot know how to write momentum in terms of x. We try the following: since
classically,

dx

p=me=m (3-20)

4 For a finite, discrere “sample space” with probabilities p; so that Zp = 1, the mean
value of any variable over the space is (fy = Thibe

A
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we shall write

d d .
P =m_x)=n Z [dxvf (x, £) xb(x, ) (3-21}
This yields.
wf (e d)
R B .
Note that thete is no dx/dr under the integral sign. The only quantity that

varies with time is (x, #), and it is this variarion that gives rise to a change in x
with time, Making use of (3-1) and its complex conjugate, we have

1 * o
=g f 4B - e 22

Ox? Oxt
Now
e (em) - L2
-2 ()= 2
RN AP

-

Hence the integrand has the form

ofnr L, e
ax(ax’“” LAIP ""”)+2‘° B

=4
. 80 that

= [ v - 2y (3-22)

since the integral of the derivatives vanishes for square integrable funcrions.
This suggests that the momentum is reptesented by the aperarar

fi O
= T a (3-23)

and that, more generally *

(fip)y = j :ix'w‘(x, if (? %) ¥lx, 1) (3-29)



50 Quantum Physics

Armed with this representation we {an now discuss the physical sig-
nificance of ¢(p), which appears in (3-2). First, it is sufficient to consider that
equation at # = 0, since ¢(p) does not have any time dependence. With

1

¥lx) = mfdp #(p) vt = \/%_jdk o(fik) g™

we find, using the inversion formula fot a Fouriet integral, that

oliik) = 7};;@ f de ylx) e

that is,

$(p) = ﬁ f dx p(x) e-trait (3-2%)

b

[dP #*(p) $lp) = fdp d*{(p) —\/;T;—ﬁfdx ¥ g—.ﬂ?::fh

= f dx () jﬁ f dp *(p) e~iv=lt
= f de P(2) ¥ ) = 1 (3-26)

This result is known as Parseeal’s theorem in the mathemarical literatute, It states
that if 2 function is normalized to 1, so is its Fourier transform. :
Next consider

i
= [aevo s E2

* ii_l ipzih
=[:bcn#(x} T \/mfdpc#(p)e /
= f ap o) p -é.ﬁ [ dx Pr(x) eto=it

- ] b #9) pHP) (327)

This result, together wich (3-26), strongly suggests that ¢{#) should be inter-
preted as the wave function in momentum space, with |¢{p)|* yielding the
probability density for finding the particte with momentum 5. When Plx, ) isa
solution of {3-14), we may define &(p, ) by
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1 _—
S ¥x, ) = mfdﬁ &(p, 1) eirsi (3-28)

The face that in general $(#, ) has a time dependence does not change (3-26),
(3-27), or its interpretation. Lest the reader think that in spite of this symmerry
between x- and bspace, p = (fi/i)(D/0x) is an operator, and x is not, we note
that x is in fact an operator too. It happens o have a particularly simple form in
x-space, but if we want to calculate {f{x)) in momentum space, then, we can
show by methods very similar to the ones used above that

0
(fx)) = f @ e*(p.0) f (iﬁ 5) #(p, 1) (3-29)
" In other words, the operator x has the representation
5 O
x = jf SP_ (3-30)

~.in momentum space.

We will find that operators play a central role in quantum mechanics, and

' we will slowly leatn a great deal about them. At this point we will indicate
only that:

L. In contrast to ordinary numbers, opetators do not always commute.

1f we define ‘
[4, Bl = AB — BA (331)
(2. 2] wlx, 1) = %%N(x. H— x?%g%’)
- %W(x’ 2 (3-32)
that is, we have the commutation relation
lp.+1 = % (3-33)

This leads to an ambiguity in transcribing a classical function fix, p} into operator
form, and we shall adopt the rule that f(x, p) be symmettized in x and p. Thus
' xp— (xp + pa)

€ — 1% + 2xpx + pa?) (3-34)
and s on. '

Later we will see that i is the lack ‘of commutativity of x and p thar stands behind
the uncermainty relations connecting these two variables. '
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2. The appearance of the operator p, with its /, might lead us to worfy
about the reality of the expecration value of p. We can, however, check the fact
that p is real. We have

- o= [arvr 2% - [acum(- )

i Ox ox
B LA
Hi[iw(\" Z)x+bx 1.:)
i 2
== ] de o= W) (3-35)
=0

provided the wave function vanishes at infinity, which it does for a square
integrable function. Sometimes one has occasion to use functions that are not
square integrable bur that have certain petiodicity conditions, for example,

¥(x) = ¥(x + L) (3-36)

If one restricts onself to working in the region 0 < x < L, then /7 d/dx is still
a hermitian operatot, since in (3-35), ’

B a
oy - o = [

B %
=7|w(L)|*—f;l¢(0)l’=0 (3-37)

An operator whose expectation value for all admissible wave functions is real is
called a bermitian operator, and hence p, like x, is a hermitian operator.*
We conclude this chapter by noting that the equation

MWixp) B D)

i
! or 2m Oxt

may, with the identification (%/1)(0/0x) = pop be written in the form

mwmo

P2
5 - 2m ¥ix, 9 {(3-38)

The opetator on the right is just the energy for a free particle. If we gencralize
this to a particle in a potential, we write

f D _

bop
S [?m’ + V(x)} ¥ix, 1) (3-39)

4 Some mathemarical background on operators is discussed in Appendix B.
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s
of, more explicitly

5 O¥ix, 1) R O%(x, 5)
,ﬁ?7 = T m om TV (3-40)

This equation, generalizing (3-1), is the basic equation of nonrelativistic quantum
mechanics, and it was first proposed by Schrédinger. The Schrodinger equation,
obtained above, can also be written in the form
X, 1
w2 Hlx, 1) (3-41)
ot
whete H is the energy operaror. H is commonly called the Hamiltoniun, because it
is an operator vetsion of the classical mechanical Hamiltonian function. Since® J
is & hermitian operator, so is % and therefore 5o is
. Vix)  (3-42)
2m _
if F(x} is a real porential.
In summary:
1. The time dependence of wave functions is given by the fitst order
partial differential equation
4 N, 1)
h——==H z
= ¥z, 5
whete H is the operator p2/2m + F(x).
) 2. Wave functions are restricted to square integrable functions.
3. The probability density for finding the particle at x is

Plx, 1) = [¥(x, |*
4. The function ¢(p, #) defined by

1 .
!P(X, 't) = \/217ﬁ . dp ¢(P, f) girzih

i3 the wave function in momentum space, and the probability density for finding
the particle with momentum 2is 9(p, D

5. The momentum p and the position x are operators, thar is, they are
quantitics that differ from numbers because of their lack of commutarivity.
In x-space, the momentum operator takes the form

- R0
P_ibx

* From now on we will drop the subscript op an #op. We will use it only when thete is
danger of confasion with a number described by the letter b
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and in p-space, the x operator takes the form
2
x =it —

op

bath consistent with the fundamental commutation relation for x with g,
i
[p,x] =+
i

We are now ready for a quantitative discussion of quantum mechanics.
We have abandoned the notion of a wave packet as representing 2 particle. This
notion was helpful to us in meking the Schrisdinger equation plausible, but now
it is ¢(x, #} and its probabilistic intetpretation that tell us whete the particle is,
without the patticle being thought of as “made up out of waves.”

Problems

1. Use (3-2) and (3-4) to write the solution of the free particle Schrodinger
equation in the form

wix, §) = f dx’ Kix, x'; 1) ¢(x', 0)
Obtain a representation for Kix, «'; #) in the form of an integtal, and evaluate
the integral. Show that
K(x, x"; 0) = 8(x = x)

2. Show that the consetvation law (3-11) holds when {x, #) is a solution
of the Schrédinger equation with a potentiak V{x), (3-14), provided that ¥(x)
15 real.

3. Suppose that F(x) is complex. Obtain an expression fot dP (x, 1}/0zand
dfde f dx P(x, 1). For absorption, the last must be negative. What does this tell
us about V(x)?

4. Consider the Klein-Gordon equation.

1 oMl ) _ WE ) (m )
R ot + 5 Yx, 7)) =0

Show that thete is a conservation law of the form (3-11) given that f{x, ) has
the form

| (22
x5} = zip,( dx v Ox
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What is the form of P(x, 1)? Can you give an argument for why the Klein-
Gordon equation is not a good candidate for a one-particle equation (i.c., an
altetnative for the Schrddinger equation)?

¥ = (1’)_”* o

5. Given that

calculate
(@) {x*;
b) V() = (x = ax

~ 6. CGalculate the momentum space wave function for the system described
by the wave funcrion in problem 5. Use it to calculare

@ )

®) V() — (o7 = ap
Calculate the value of Ax Ap using the above, and the result of problem 5(b).

7. Given the wave function

W =
a

{a} Calculate N needed 1o notmalize y(x).

{(b) Use the above wave function to calculate {x" ). What values of # lead
to convergent integrals?

(c) Calculate {p?) directly, and using the momentum space wave function.
(d) Use the definitions '

Ax = \/(x*) — {x)®
ap = Vi) — ()
to calcutate Ax Ap for this problem.
8. Show thart the operator relation
el yp—inaih — + a

~ holds. The opetator e4 is defined to be
et = A/nl
n=0

[Hinz. Calculate e xe—i7ait fp) where f(p) is any function of p, and use the
representation x = ifi d/dp]

9. Consider the functions ¥{#) of the angular variable @, restricted to the
interval —x < ¢ < 7. )
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If the wave functions satisfy the condition y(x) = ${— =), show that the operator

L B4
i ode
-
is hermitian.
10. Consider ¢{p), the momentum space Wave function=of a partide, If
this function is only defined for positive values of p, what condition must ¢(p)

satisfy in order that x be & hermitian operator? [Use (3-30).] -~

o




c};apter 4

Eigenfunctions and Ei genvalues

Let us consider the time-dependent Schridinger equation obtained in
Chapter 3,
SN R Oy
= o TV s (4-1)
and attempt tO solve it by reducing it to a pait of ordinary differential equations
in one variable. Write ]
¥xs) = T(R)ulx) (4-2)
which implies that

Pl om e

. Dividing by #(x) T(f) we get

o AT/ A — (B 2m) (du(x)/dx?) + V(%) alx)
e T () (43)

ae _ [— T Pl | V(x)uw] ()

This can only be satished if both sides are equal to a constant, which we call E,
The sclution of

. dI(?)

fi = ETi¢ 4-4

S ) (4-4)
is ' _

T(r) = CeiErin (4-5)
where Cis a constant. The other equation is

h® d2x(x)
T om + Vixdu{x) = Eu(x) {4-6)

This equation is frequently called the sime-independens Schridinger equation. Its
charactert is really different from that of (4-1), Equation 4-1 describes the time

=7
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development of y(x,); Eq. 4-6 is an eigenvalue equation. To explain what this
means, we must retufa to the notion of an operaror, which was briefly men-
tioned but not defined in the lasc chapter.

Most generally, an operator acting on a function maps it into another
function. Let us consider some examples

Of(x) = flx) + <*

Of(x) = [fF

Of(x) = f{3x* -+ 1)

Of (x) = [df(x}/dx}?

Of (x) = df(x)/dx — 2f(x)

Of(x) = A f(x) {47
All of these examples share the property cthat given a function f{x), there is a
rule that determines Of(x) for us. There is a special class of operators, called

linear operators (we denote these operators by L to distinguish them from the
general operators 0). These have the property that

LA + A0 = LAY + L) (4-8)
and,! with ¢ an arbitrary complex number,
Lef) = L) (49)

Thus, in cur list only the last two are linear operatars.
A linear operatot will map one function into another, as in the example -

Lo = L2 o0

It is instructive to think of the functions as analogous to vectors in a three-
dimensional space, The action of an operator is to transform a vector into
another vector. In the special case that the vectors are all of unit length, an
operaror will transform one point on a unit sphere into another. An opetatot,
in this special (but very relevant) example, may be a rotation zbout an axis
(Fig. 4.1). Let the operator be a rotation of, say, 30° about the z-axis. It is easy
to visualize what happens to various vectors undet this operation. There will be
two vectots that have a special property: the unit vectors to the north and south
poles will be mapped into themselves under the rotation. This is 2 special
example of an operator equation like (4-6), which may be written as

Hug(x) = Eugl(x) (1-10)

\ There z1¢ also antilinear operatoss, for which (4-9) is replaced by Lef(x) = *Lf(x).
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ig. 4-1. An illustration of the operator fotating
all vectors by 30° with the vectors lying on the unit
sphere: for vectors on the equaror (A — A’), atan
‘intermediate latitude (B — B'), and ar a pole
€= =0

“This equation states that H, the Hamiltopian Operator acting on 2 special class
of functions, will give back the function that it is acting on, multiplied by a
constant, The constant is called the eigemvatue. The solution of the equation
depends on E, and we have therefore labeled it with an E. The solution up(x) is
called the eigenfunction, cortesponding to the eigenvalue E, of the operator H.
We shall see that eigenvalues can form a continuum or be discrete,

The solution (4-2) is of the form ug(x) eF* Since (4-1) is a linear
. equation, a sum of solutions of the above form, with permissible values of E,

is also a solution. Thus the most general solution of (4-1) is

Yixs) = (): + f dE) C(E) #eg(x) e—iBuin (4-11)

where C(E) is an arbitrary function of the cigenvalues, and the sum extends
over the discrere values of F, the integral over the continuous range of eigen-
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values. The eigenvalues of the operator H ate called the energy eigenvalues,
as is suggested by the form of
Po
H=" + Vi) (4-12)
2m

Before discussing a very simple buc instructive example, we note that the
separation of the equation would fail if the potential V" depended explicitly on
time. We will see later chat when this is the case, energy is not 2 constant of the
motion.

A. The Eigenvalue Problem for a Particle in a Box

We consider Eq. 4-6 with
- Vix) =0 lxl < @
= o elsewhere (4-13)

This implies thac the wave function must vanish fot |x| > &, that is,

wa) = w(—a) =10 (4-14)
Inside the hox
2 2mE
;:f) 4 —Z’T w(x) = 0 (4-15)

First we notice that if E < 0, then (4-15) takes the form

Pul) _

X u(x) = 0 . {4-16)

with x = 2m|E| /A% The most general solution is a linear combination of e**
and ¢, and thete is no way of satisfying the boundary conditions (4-14). Thus
the energy eigenvalues must be positive. We write ‘

2mE
k= 7 (4-17)
so that the equation (4-13) takes the form
dﬂ
_.T:;S‘) B = 0 (4-18)

whose solutions are sin &x and cos &x. The boundaty conditions imply thac for
the sine solution, which we denote by w70,

ba—nx  m=1,2.3 ... (4-19)
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50 thar

BT = —— - ' (4-20)

It is easy to check that the normalized solution is

1 1793
#£700) = —= sin — . (4-21)

Vva a

_The cosine solution, denoted by #{*(x} must be such that

br=(—%r n=1,273,. .. ' {4-22)
thart is,
o I = /2] e
B e (423)
The notmalized solution is therefore
1 — (/9]
. “;T)(x) . 7 cos [”_(_M (4_24)
a a

We see that the () signs refer o the even/odd property under the reflection
x— —x
The solutions have the property that

[ * Bl P = f " B ) = b

‘[j sl A7) = 0 (4-25)

that is, they satisfy what are called erthonarmality conditions. Since the solutions ate
real, the complex conjugation is not really necessary, but is inserted for con-
sistency with future usage.

The state of lowest energy, the ground s is reptesented by #{(x), and
its energy is :

e :
E{t = ~— L (426)
Bma

The solutions ate eeal. It thetefore follows that

@r=o0 (4-27)

This can be done by direcr calculation, or by a symmetry argument: for any one
of the solutions, which are real, {p} is of the form (%/i) X (integral), Since {p)
must be real, the integral, involving only real funcrions, must vanish; equiva-
lently, the integral involves a product of two even of twor odd functions, with
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d/dx inserted between them. The total integrand is thus an odd function of x,
and upon integration OVer a Symmetic interval must yield a vanishing integral.

We can calculate (p?) for the various solutions. In fact, since inside the
box g = 2mE, we have

(p*) = 2mES" (4-28)
Notice that

2V (p*) ~ 20k > T (4-29)

is consistent with the uncerainty relation.? We also note that che larger the
number of nodes in a solution, the higher is its energy (Fig. 4.2). This is under-
standable, since the kinetic energy is larger for a solution with z larger cutvature,
a measure of which is 4%/dx*. Specifically

? & B du*du B
- PR L [ V)it R
SR

H

du
d

2m dx dx 2m

is latge when the function has a lot of variation in it

B. The Expansion Postulate

An arbitrary function ¢(x), satisfying cthe boundary conditions y{a) =
¥{—a) = 0, can be constructed from our solutions. It will be a superposition
of all of them

W) = 3 (AP0 4 AT ) (430)

The orthonormality telations can be used to determine the coefficients AL
With the help of (4-25) we can calculate, for example,

f dinF* (W)

P> [Af.“ f MmO () d + Ay f w7 () dx]
m=1

= AP ‘

so that

A = f Al () Yx) (4:31)

3Tt is 2 general feature that for higher cigenfunctions AxAp grows with the eigenvalue.
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Fig. 4-2. Eigensolucions for particle in a box.

As in our discussion of the free wave packet, we can calculate the time develop-
ment of this arbitrary initial packet. Since each of the solutions # (x) acquires
the time dependence #~Er 24/ [see (4.11)), we have quire generally

Yo = 20 [ALPE P (x) e 4 AL L (x) e ERerm)  (4.32)
]

To ger an idea of the physical meaning of the coefficients A™), we calculate che
expectation value of the energy in an arbitrary state. Since inside the box H =
P/2m, and outside the box nothing contributes, and since

HD (0 = B (x) (4-33)

we have, using the orthonormality relations (4-25),
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) = j dep*() HY ()
= [ dx{ 3 [Af,*’*uﬁ“(x)* + Ai"*ui"(x)*]}
n=1

x | £ B Ao + 50a0i0e |

m=1

il

ESD AP+ B AT (4-34)

m=1

In exactly the same way we show that

[ ) P = 1

implies that
(AP 1A ) = (435
=1

Equation 4-34, together with the notmalization condition (4-33), strongly
suggests that | A2 be interpreted as the probability that a measurement of the
energy for the arbitrary state yields the valne ES®). Note that only the values B are
possible for the energy, so that a given measurement can only yield one of the
" values A,

For what packet wilt the measurement always yield an energy EY (an
eigenvalue)? Clearly this will be so only when

41| = b (4-36)

that is, when {x) = #{ (%), the eigenfunction corresponding to the eigenvalue
ESF. This leads vs to a very important conclusion:

Suppose that we have a general packet described by y(x). If an energy measure-
ment js carried out, only an eigenvalue of the Hamilconian operator H can
result, with probability

P(E,) = |[ dxaa*(x) ¢()|? (4:37)

{where we have left off the () label for generality). Furthermare, afier the meas-
wrement that has yielded the eigenvaine En, the state of the system is described by the
eigenfunction uy(x}, since otherwise a repetition of the measurement would not
necessatily give the same tesult, and reproducibility of a measurement for a
given system is essential for the measutement to have any meaning. These
statements ate not pecubiar to the problem of a particle in a box. They hold for
more general systems [with a F{x)], and also for hermitian operators other than
the Hamiltonians, as will be seen again and again, and these statements lie at
the heart of quantum mechanics.
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C. Parity

The cigenfunctions for the particle in 2 box wete divided into two classes:
those even in x, denoted with 2 (4) and those odd in x, denoted with (—). If
we start with 2 wave packet y(x) that is even in x, say, then in (4-30) all the AL~
must vanish. Equation (4-32) then shows that the packet remains even in x for
all time. The same holds for a packet that is initially odd. Thus for our box,
which was symmetrically centered abour x = 0, we find that “evenness” and
“oddness” ae time independent. Since any constant of the motion is of interest
to us, we will formalize the discussion somewhat,

We do this by intcoducing the parity aperator P, whose rule of opetation is
to reflect x — —x. Thus for any packet Y{x), we have

PY(x) = $(—x) (4-38)
Fot an even packet we have )
PYO() 2 g0 (4-39)
and for an odd packet
: PYOG) = —p() o (440)

These two eguations are eigenvalue equations, and what we have shown is that
. even functions are eigenfunctions of P with eigenvalue 41, while odd functions
are cigenfuntrions of P with eigenvalue — 1, In the preblem of the particle in a
box, the functions #(x) are not only eigenfunctions of H; they are simul-
taneonsly eigenfunctions of P.

The eigenvalues 41 are the only possible ones, Suppose we have

Pu(x) = hu(x) (4-41)
Applying P again, we would get
Plafx) = Phalx) = Nau(x) {4-42)

However Plu(x) = #(x), since two reflections should not thange anything.
Hence A = {, thatis, A = 4+1. An atbitrary function (%) can always be writren
as a sum of an even and an odd function

W) = B9 + 9] + H) — 9] (€43)

that is, just as with the eigenfunctions of H discussed in our example, any func-
tion can be expanded in terms of the etgenfunctions of this new operator. This
100 is 2 general feature of hermitizn operators: the eigenfunctions of any hermitian
operatar are said 1o form a complete set, in terms of which any function can be expanded.
We leave it 1¢ the reader to show that (P} is real for any state y(x), which
implies that the operator is hermitian.
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Fig. 4-3. Box for which there is no symmerry
under reflections.

The explicit appeatance of cvenness and oddness came about because we
centered the box at x = 0. Had we taken it 1o lie between 0 and 24, nothing
would have changed, and there would still be symmietry under reflections abouc
% = a. Such symmetry would, however, be much less apparent. The lesson to be
Jeatned here is chat in setting up 2 quantum mechanical problem one should
always pay attention to the symmetries in the Hamiltonian, and choose the
coordinates in a way that exhibits the symmetries most explicitly. If the bex
were ugeven (Fig. 4-3), no amount of changing coordinates would bring abour a
symmetry. The important fact is that the symmetry be in the Hamiltonian.? This may
be seen more cleatly by asking under what circumstances an even function will
remain even for all time. Let

$(x,0) = Y(—x,0) = §+{x) (4-44)

The time development is given by
iﬁaia(;?g = Hf{xp) {(4-45)

If we opetate with P on this equation, we get
4 0
ih - PYxg) = PHy(x.8) (4-46)
Under the special circumstances that
PH{(x/) = HPY(x}) (4-47)

' When dealing with the box, we consider the walls as part of the potential, that is,
the Hamiltonian. That is why we do not speak of boundary coanditions instead of the
Hamiltonian.
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which holds when H is even under x — —ux, rhat is, when V(x) is an even func-
tion {since #2/dx%? is even), we have

ta]
i [Po(xs)) = HIPY(x,)] (4-48)
Hence
V0 = 31+ P) gl (4-49)
and
VO = 300 — Py (xs) {4-50)

separately obey the Schridinger equation, and do not mix, if the initial state js
even (or odd). The conditien for the time-independence of patity only holds if

(PH — HP) Y(xf) = ¢ (4-51)
' for all possible states, that is, if the operatores P and H commure
PH] =0 (4-52)

‘This impormnt condition will be scen to be quite gencral: any operarer that does

not have an explices time dependence and that commutes with the Hamiltonian H is
 eonstant of the motion. In particular, if the potential changes with time, that is, we

have ¥(x,5), then the energy irself is not a constant of the motion, just as in
; classical mechanics, Note that when V depends on #, the separation of the
| equation into an equation for the time dependence and an energy eigenvalue
equatijon is not possible,

D. Momentum Eigenfunction and the Free Particle
Our discussion of parity showed that it is not only the energy operator H

that has eigenfunctions and eigenvalues. Let us now solve the eigenvalue
equation for the momentum operator

bopitp(x) = piin(x) (4-53}
Since po, = ({#/INd/dx), this reads
2o 2 s

The solution to this equation is
#p(x) = Celv=it (4-55)

with Ca constant to be determined by normalization, and the eigenvalue preal,
so thar the eigenfunction does not blow up at either + o or — . This is the
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only constraint on p: we say that p,, has a continuons spectrum. We might, by
analogy with (4-23), expect that the eigenfunctions obey orthonormality con-
ditions. We see that "

f‘ix‘t‘;'(x) ﬂp(x) = |C|2[dx g”?’—rﬂ’)uk
= 2n|C|h8(p — p) (4-56)
With the choice

1
- _ giprih 4-57
"p(x) \/_Z'Wﬁe (4-57)

{4-56) reads
fm dx (%) w0y = 8(p — p) {4-58)

‘This differs from {4-23) cnly in that the Kroenecker 8y, appropriate for discrete
indices is teplaced by a Dirac delta function &(p — p”) for the continuous indices.
The statement that any wave packet #(x). may be expanded in terms of a
complete set of eigenfunctions can also be established here. The analag of (4-30)
must take into account that we are summing over a continuous index g, so that
we write
ipaih

x) = f ap ¢(p)ﬁ (4-59)

According to the interpretation implicit in (4-37), |@(p)|® where

5 [d,x( gipaih )*
= —_— X 4-60
#(p ) ¥ (#60)
gives the probability that a measurement of the momentum for an arbitrary
packet §(x) yields the eigenvalue p. In this way we justify the conjecture made
abour ¢(p) in Chapter 3 (cf. Eq. 3-30).

Let us now tutn to the free particle Hamiltonian. When Vix) is zero
everywhere, the energy eigenvalue equation reads

dulx)
T TR =0 (4.61)
where £2 = 2mE/. The solutions are ¢** and ¢—**%, or linear combinations of
these, for example, cos 4x and sin &x. The trouble with all of them is that they

w0

are not square integrable, since f dx| Aet= + Be~*%|* diverges for all values

—m

'of Aand B.
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There are three ways of getting around this difficuley. :

(z) We may consider the problem defined by (4-61) as the limiting case of
a particle in a box, with the walls receding to infinity, that is, # — e, In this
limit the solutions (4-21) and (4-24), even aside from the normalization factors
1/+/ 2 will become trivial, unless » becomes very large, so that

— = . (4-62)
a

becomes finite.* We can then neglect the § in the (n — 1) in the even solutions
(4-24), and obtain the solutions

1 1.0
:E sin fx 7; cos kx (4-63)

We may keep the 1/+/a factors: they will drop out of the answer to any physical
question that we may ask about the system.$ It is sometimes useful to keep them,
since their presence in a final result indicates that an etror has been made.

(b} We may work with wave packets. A solution of the form

Plx) = ¢t (4-64)
is 4 special case of (4.59) with
#(p) = Vonhi 8(p — k) - (469)

that is, an infinitely peaked momentum-space distribution. Suppose we replace
this limiting ¢(p) by a very sharply peaked function v/Zz& g(p — #£). Then
€% will be replaced by

I

¥ix) f dp 2= g b — Jik)

= eikzjdq eie=it gl g) (4-66)

which is 2 plane wave, ¢*%, multiplied by a very broad function of x. We may
make this function so broad that it is essentially constant over the tegion.of
Physical intetest. The uncerrainty in the momentum will now be of the order of
magnitude A/ (size of x-packet), and if the denominator is of MACroscopic size,
this uncerrainty is negligible. We thus satisty the mathematical requirements
without changing any of the physics. The wave packet description is actually
the one that is closest to what teally happens physically, since any way of pre-

4 We also keep x finite, and are not particularly intecested in values of x thar ate 2
haite fraction of «. ) .
_ ¢ A guestion that is nor meaningful physically is one that depends on the existence of
the walls. For example, “How long will it take for a wave packet to go to the walls and
Ieturn o x = 07" is 2 questicn that we classify as not physically relevane,
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paring the initial state, for example, firing an electron gun, can nevet, in practice,
Create an exact MOMENTUID eigenstate.

{c) The difficulty stems from the fact that for a wave funcrion like £5%, the
particle is not confined to any region of space, so that the probability of finding
it anywhete is zero. If we do not ask questions that involve the ptobability of
finding the particle in any finite tegion, no problems atise. One way of avoiding
the normalization difficulty is to deal with the probability current, or flux

: Bl . dx  #Nx)
o) =5 [«« W HD_H y] (467)
discussed at the beginning of Chapter 3. For a wave function Cete=, the flux
is | C|* p/m; for the wave function Ce—*?#/*, the flux is — | C|? p/m. If we note
that for a one-dimensional problem, the flux of paticles with a density of
1 particle/cm, moving with velocity # = p/m is just v—thac is the number
crossing a point x = xy per second—we see that | C|? tepresents the density of
particles per cm. Thus (4-57) represents particles with a density 1/2xf per cm.
In thtee dimensions, with

Hy(r) = C &7 (4-68)

the flux will be |C|* p/m, and this comresponds to a flow of particles, with
density | C|? per cm® crossing a unit atea perpendicuiar to p, when the particies
are moving with velocity v = p/m (Fig. 4.4).

The energy eigenvalue equation (4-61) has two independent solutions,
%2 and ¢—i*=; equivalently, the pair of teal solutions cos kx and sin kx is also
independent. Whichever pair we ¢hoose, we notice thar in contrast to the prob-
lem of 2 particle in a box, thete are swo solutions that have the same energy
associated with them. This is an example of something that happens quite
frequently: there may be mare than one independent eigenfunction that corresponds 1o the
same eigenvalud of & hermitian operagor. When this occurs, we have a degeneracy.

In the two cases that we have above, the two solutions are orthogonal:

[ de(e—*2)* gibe = f dx etz = 0
f dx sin kx cos kx = 0 t4-69)

for & # 0. It is always possibie to make lincar combinations such that this is true,

Such linear combinations are, of course, orthogonal to eigenfuncrions that

correspond to diffetent values of the eigenvalue, for example, the encrgy.
‘What distinguishes the two degenerate eigenfunctions? For the set

€ See Appendix B,
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Fig. 4-4. The relation between velocity of patticles and flux, that is, number of
patticles crossing a unit area perpendicular to velocity, per unir time.

(r%, &%) the difference is that they ate eigenfunctions of the momentum
peratot -

od
B ik — o ikr :bﬁk etiks 4-
Pape i 2t ( 70)‘
corresponding to different eigenvalues of the momenturn. Similady the pair
<os &x, sin 4x) are eigenfunctions of the parity operator, corresponding to
different eigenvalues

- P cos kx = cos kx

Psin kx = — sin kx (4-7_[)

In both cases, what differentiates the degenerate cigenfusictions is that they zre
simultaneous eigenfunctions of anothet hermitian aperator. Both the operators
Pep 2nd P have the property that they commute with the Hamiltonjan Por’f2min
this problem. We shall show later that this is 2 necessary condition for the
_existence of simultanéous eigenfunctions. For example p,; and P do not com-
mute, [since (B/7)(d/dx) changes sign under x — —x], and therefore the eigen-
functions of one of the operators cannor all be simultaneous eigenfunctions of
the other, '

We have learned an enormous amount abour quantum mechanics from
the two simple problems that we have considered. We shall return to these
mattets in later chapters and generalize them. In Chapter 5 we will again consider

some very simple problems, but this time we will concenttate not on the

mathematical features, buc rather on the physical systems that they are simple

models of.
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Problems

1. You'are given the following operators
4
@ Owlx) = x¥(x) (b) Oxflx) = x —¥(x)

(©) Owix) = WHx) (d) Oulx) = 4

© oo =¥ 1. 0 0w = [ i)

Which of these are linear operators?

2. Sclve the eigenvalue problem

Osb(x) = M(x)

What values of the eigen\;alue \ lead to square integrable eigenfunctions?
(Hint. Differentiate both sides of the equation with respect to x.)

3. Calculate the following commutators

(a) [0, O4]

(b) ‘ [0y, G4

The procedure is to calculate [4,B) by expressing A(By) — B(AY) in the form.
& ‘

4. Calculate
| ax = Vi) A
for the #{*(x) given by (4-21) and (4-24). Using {p*) given by (4-28) calculace
Ap Ax

It is characteristic that for the higher states the uncertainty increases with #.

5. Solve the Schrédinger equation for a particle in a box with sides at
x = 0and x = L with the boundary condition that

¥(0) = $(L)
What are the eigetivalues and the normalized eigenfunctions?

.. 6. A particle is in the ground state of a box with sides at x = +a. Very
suddenly the sides of the box ate moved to x = 45 (§ > ). What is the proba-
bility that the particle will be found in the ground state for the new potential?
What is the probability that it will be found in the first excited state? In the latrer
case, the simple answer has a simple explanation. What is it?

7. A particle is known to be localized in the left half of a box with sides at
x = zta. If all values of x in the lefc half side afe equally probable, what wave
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function describes the particle at 1 = 02 Will the patticle remain localized at
later times?

Calculate the probability that an energy measurement yields the ground
state encrgy; the energy of the first excited state. :

8. A particle is in the ground state of a box with sides at x — Dand x = L.
- Suddenly the walls of the box are moved to + =, tespectively, so that the
patticle is free. Whae is the probability that the particle has momentum in the
range {p, p + dp)? After the removal of the walls, the energy of the particle is
P/2m, which need not be equal to the ground state energy. Can you give an
explanation for the appatent lack of enetgy conservation? '

9. Repeat the above calculation for a particle initially in the sth eigenstate.
Show that the corresponding probability is given by
Inty 1 — (—1)* cos LR
ALY (/R — ra/ LT

Sketch the distribution, Show that it conforms with the uncertainty relation, and
that the result is in agreement with the correspondence principle when # is large.

10. A particle in free space is initially in a wave packer described by
1/4
U = (9’) ez

Ly

{a) What is the probability that its momentum is in the range (p, p -+ dp)?

(b) What is the expectation value of the enctgy? Can you give a rough
argument, based on the “size" of the wave function and the uncertainty principle,
for why the answer should be. roughly whar it is?

@ The wave function for a particle is given by
\b(x) = A kT + B g itz
What flux does this represent?

What is the flux associated with a particle described by the wave
function

¥(x) = u(x) et
where #(x) is a real function?

13. Consider the eigenfunctions for a box with sides at x — +a. Without
working out the integral, prove that the expectation value of the quantity

xﬂpa + axpsx + Paxz

vanishes for all the eigenfunctions,
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14. Prove that the parity operator, defined by
Py(x) = $(—=x)

is a hermitian operator. Also prove that the cigenfunctions of P, correspow
to the eigenvalues 41 and —1 are orthogonal.

References

A detailed discussion of the properties of secand order differential equations as
related to quantum mechanics may be found in J. L. Powell and B. Crasemanc,
Onantum Mechanics, Addison-Wesley, Inc., Reading, Mass., 196, and D, 8.
Saxon, Elementary Quantum Mechanics, Hoiden-Day, San Prancisco (1948).

See also any of the mote advanced textbooks listed at the end of the book.
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One-Dimensional Potentials

Here we solve some simple problems of one-dimensional maotion, They
ate of interest because they illustrate some nonclassical effects, and because
many physical situations ate effectively one-dimensional even though we live in
a three-dimensional world,

A. The Potential Step

For this problem we take (Fig. 5-1) the form of V{;x) to be
Vix)y=0 . x<0o

= Vs x>0 (5-1)
"The Schrodinger equation
— % % + V(x) #(x) = Eu(x) (5-2)

A Vix}

Fig. 5-1. The potential step.

75
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takes the form ) \

& d’f"’ + 22 1B - V) alx) = 0 53)

We wtite, a5 usual
e (5-4)

and we also inrroduce

ﬁZ
‘The most genetal solution of (5-3) for x < 0, whete V{x) = 0/is

= ¢ {5-5)

#(x) = eihz 4 R g {5-6)

This corresponds to 2 flux moving in the positive x direction, of magnitude

fi . . . ,
Tim [(e~*= 4+ R* ¢ik=) (#k ¢ — jkR e~**%) — complex conjugate]

“.
I

3
e (t— |R® ) (5-7)
i3

We may view ¢*= with flux fik/m as an incoming wave. If there were no potential,
we could choose ¢ as the solution forall x, so that we actribure R to the presence
of the potential. This potential gives rise to a reflected wave, R £, with a
reflecred flux K& | R|%/m.

For x > 0, we write the solution

u(x) = Teies (5-8)

The most general solution forx >_0 is a linear combination of ¢%* and ¢~*4%, but
a term involving the latter would desctibe a wave coming from -+ « in the
negative direction, and with the “expetiment” that we have set up, the only
wave on the right can be a transmitted wave. The flux carresponding to (5-8) is
oy .
= s 69)
b/
Since there is no time dependence in the problem, the conservation law (3-11)

implies that 7(x) is independent of x. Hence the flux on the left must be equal
the flux on the right, that is, we expect that

M |2 (5-10)
n

hk
— Q- [RY) =
"
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The continuity of the wave function implies that
1+ R=T (5-11)

cbtained by matching the two solutions 2t x = 0, In spite of the fact that the
; potential is discontinuous, the slope of the wave function is also continaous, as
can be seen by integrating (5-3) from —e to +¢ (with « arbitrarily small and
- positive) and using the continvity of the wave function:

@.-G).-[+i2

fe dx i—? I:V(x) - E] u(x) = ¢ {(5-12)

" We note, for future reference, that if the portentizl contains a term like Vyd(x — )
then integration of the equation from ¢ — eto 4 + ¢ gives

du dan 2m [ ate
(E)w - (d_x)a. = ] E Vil —a)ux

iﬁ”} Vo ula) ' (5-13)

The continuity of the derivative for cur potential implies that

k(1 — R) = igT (5-14)
“We can therefore solve for R and T to obtain
R_*—1¢
£+ q
2k
= 5-15
Tie (5-15)

From this we can calculate the reflected 2nd transmitted fluxes:
RE ht B — 4\
it ‘ Ri . (__i)
7] m\E+ g
E.é_ 4kq
m (k4 g)?

SR

[T|* = (5-16}

We note the following:

1. In contrast to classical mechanics, atcording to which a particle going
ovet a potential step would slow down (to conserve energy) but would never be
teflecred, here we do have a certain fraction of the incident particles reflected.
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This is, of course, a consequence of the wave properties of the particle; partial
teflection of light from an interface berween two media is 2 familiar phenomenon.

2. Wich the help of (3-16) we can easily check that the consetvation law
(5-10) is indeed satisfied.

3. For E 3> Vo, that is, for ¢ — & from below, the ratio of the reflected
flux to the incident flux, that is, | R| 2 approaches zero. This agrees with intuition,
which tells us that at very high energies, the presence of the step is but a small
perturbation on the propagation of the wave.

4. If the energy E is less than Fy then g becomes imaginary. If we note
that now the solution for x > 0 must be of the form

wx) = Teldls (5-17)
50 as not to blow up at 4 =, we see that now
k- ilql)(k - flffl)*

R|? = ( - . =1 5-18

R = gl \e 4304 (>-18)
Thus, as in classical mechanics, there is now total reflection. Note, however, that

2k
T=717—""" 5-19
“Fadl G19)

does not vanish, and a part of the wave pepetrates into the forbidden tegion.
This penetration phenomenon again is characteristic of waves, and we shall see
a little later chat it permits a “tunneling” through barriers that would totally
block particles in a dassical description. There is ne flux to the right, since #(x)
vanishes for a real solution even if the coefficient in front of it is taken to be
complex.

B. The Potential Well

We next consider the potential (Fig. 5-2)

Vix) = 0 X< —a

=~V —a<x<a

=0 a<x (5-20)
We again write ’

2mE
B = ' {s-21)

and

gt = 2mlE + Vo) (5-22)

ﬁﬂ
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Fig. 5-2. 'The potential well,

We can immediately write down the solutions

u(x) = et 4 R k= x < —a
#x) = Ae¢itm 4 B oo —a<x<a
#(x) = T giks a<x (5-23)

“These correspond to an incoming flux fik/m from the left, a reflected flux
Aik|R|*/m and a transmitted flux £|T]%/m to the right, Inside the well there
are waves going in both directions because of the reflections at both discon-
tinuities at 4. According to Aux conservation we should get

Rk
0= IR =g gmn = Py oy

:“Marching wave functions and derivatives gives the four equations
rit o Rtk = fmice 4 B giee
ke~ — R et} = jg(A i — B gt}
© Aettr 4 Bt = T ks
ig(A ¢ — B i) = j§T gk (5-25)
A little algebra yields the results
(4> — #%) sin 2qe
2k cos 2g2 — g + ) sin 292
2kg
2kq cos 2qa — Hg® + &%) sin 24
Again, if E 3> Vi, there is practically no reflection, since q* — B* K 2bg, and as
E.-— 0, the transmission goes to zero. Thete is an item of special interest: in the
special case that sin 2ga = 0, that is, for the energies given by

zw.zﬁ‘!
B=—Vo+”—a— n=1,2,3 ... (5-27)

R = j gtk

T = g Zika

(5-26)
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there is no reflection. This is actuzlly 2 model of what happens in the scattering of
low energy electrons (0.1 V) by noble gas atoms, fot example, neon and argon,
in which there is anomalously large transmission. The effect, first observed by
Ramsaver and Townsend, is described as a transmission resonance. A more
accurate discussion must, of course, involve three-dimensional considerations.
In wave language, the effect is due to a destructive interference between the
wave reflected at x = —a and the wave reflected once, twice, thrice, . . ., at the
edge x = a. The 1esonance condition 244 = #iw, which may be written in the
form

h=—=— (5-28)

q »

is just the one that describes the Fabry-Perot intetferometer.

In addition to the above solutions for E > 0, there are, remarkably, also
solutions for E < 0 provided the potential is negative, that is, ¥ > 01in (5-20).
They will turn out to be discrete. Let us wtite

2mE
ﬁ2

The solations outside the well that are bounded at infinity are

= -« ' (5-29)

wix) = C e x < —a
#x) = Ge= a<x (5-30}

Since we are dealing with real functioas, it is mote convenient 10 write the solu-
tion inside the well in the form

#(x) = Acosgx+ Bsingx —a<x<a (5-31)
Note that

= %(Vd— {E[} >0 (5-32)

Matching solutions and derivatives at the edges x = =4 yiclds

Ce* = Acosqa — Bsinga

wCy e~ = g{A sin g2 + B cos §a)

Cy e = A cos gz + B sin gz

—xCyp e = —g({A sin gz — B cos ga) {5-33)
These may be combined to yield
A sin qu — B cos g2

7 4 cos ga + B si:@

K=

A sin g2 + B cos g4
sl (5-34)
A cos gu — Bsin qa
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Fig. 5-3. Solutions for discrete spectrum in attractive potentiaf well,

K\

" Together these imply that AB = 0, that is, the solutions ate either even in
x(B = 0) ot odd in x(A = 0), a sicuation encountered in the case of the infinire
- box. The wave functions are roughly of the shape shown in Fig. 5-3. The ground
 state, with 0o nodes, is even. This is a general property of simple systems. ‘The
- conditions that determine the energy are from (5-34)

k= gtan ga even solurions
K= gcot g2 odd solutions (5-35)
~ Let us examine these separately.

(2} The even solutions:

Wich the notation 7
_ vt

A 7

¥ = qa (5-36)

the first of the telztions (5-35) reads

Vi—y
¥

If we plot tan y 2and +/A — ¥*/y as fonctions of 7 (Fig. 5-4), the points of inter-
section determine the eigenvalues. These form a discrete set. The larger \ is, the
further the curves for v/'X — 3%/y go, that is, when the Dpotential is deeper and/or
broader, there are more bound states. The figure also shows that no matter how
small A is, there will always be at least ofe bound state. This is characteristic of
 one-dimensional attractive potentials, and is #of truc for three-dimensional
potentials, which behave much more like the odd-solution problem that we wil}

=tny (5-37)
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large
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o] 2 L 3ni2 2% 572 3n n/2
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Fig. 5-4. Locarion of discrete eigenvalues for even solutions in square well. The
rising curves represent tan y; the falling curves are V2 — ¥/y for different values
of x. -

discuss below. As A becomes large, the eigenvalues tend to become equally
spaced in y, with the intersection points given approximately by

y~@m+ = n=201,2... {5-38)

This is just che eigenvalue condition for the even solutions of the infinite box,
and this is as might be expected, since for the deep-lying states in the potential,
the fact that it is not teally infinitely deep does not matter very much.

(b)' The odd sclutions: :

Here the eigenvalue condition teads
Vi—7y
y

Since —cot y = tan (x/2 + ), the plot in Fig. 5-5 is the same as in Fig. 5.4 with
the tangent curves shifted by /2. The large X behavior is mote ot less the same,
with (5-38) replaced by

yonw r=123..." 7 (5-40)

= — coty (5-39)
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Fig. 5-5. Location of discrete eignevlues for odd solucions in square well. The
rising curves represent —cot y; the falling curves are /% — #/y fot different values
of & Note thac there is no eigenvalue for » < (x/2)%

In contrast to the even solutions, there will only be an intersection if VA — /4
> 0, that is, if :

mVod®  a?
%:-’T (5-41)

. The odd solutions all vanish at x = 0, and hence the bound-stace problem
o the odd solutions will be the same as for the potential well shown in Fig. 5-6,
since in the latter, the condition #(0) = 0 would be imposed, We shall see that
ch conditions are imposed on wave functions in the three-dimensional world,

Fig. 5.6. Equivalent potencial for odd solu-
tions of square well bound state problem.
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C. The Potential Barrier

We now considet

Vix) =0 x < —a
= Vs —a< x<'a
=0 a<x (5-42)

We will limit our discussion to energies such that E < ¥y, that is, energies such
that no penetration of the barrier would occur in classical physics (Fig. 5-7)-
Inside the barrier we have the equation :

dul(x] 2m
a’_:"‘) + T,};(E- Vo) #(x) = 0
that is
dulx
::ﬁ) — Bulx) =0 (5-43)
The general solution
W) =Aes+ Bee  |x| <a (5-44)

is to be matched onto
u(x) = ¢t*= 4 Reih® x < —a
= T gitx x> a (5-45)
Actually we need not go through the wouble of solving this since the resulits can
be tead off from (5-26) with the substitution
g —ic= iV /) Vs~ E) (5-46)

Thus, for example,
2&x
T = —2ika 4
f 2kx cosh 2ke — i(k* — «*) stnh 2¢a (5-47)

Vix)

SN T

E
¥

- a

Fig. 5-7. Potential bamrier. Energy is such that'a
classical parricle would be totally reflected by the
barrier.
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and this implies that

. (2Ex)?
1ﬂ‘w+mmwm+mm (5-18)
There is ransmission, even though the energy lies below the top of the barrier.
This is a wave phenomenon, and in quantum mechanics it is also one exhibired
by particles. This tunneling of a particle through a barrier is frequently en-
countered, and we shall discuss some applications. We also note that when xz is
- large, the ratio of transmitted flux to incident Aux is

2k \* !
T|P (m) e e (5-49)

This becomes an extremely sensitive function of the width of the barrier, and of
the amount bymyhich the barrier exceeds the incident energy, since

W=Fgﬂm—mrz (5-50)

In general, the barriers that occur in physical phenomena are not square,
and to discuss some applications, we must first obtain an approximate expression
for the transmission coefficient | T|* thtough an itreguiarly shaped barrier. The
proper way to do this, given the fact that there is no exact solution available for
-most potentials, is through the Wentzel- Kramers-Brillowin (WKB) approxi-
mation technique.! Our discussion will be less mathematical,

. We observe thar (5-49) consists of a product of two terms, the second
of which is by far the more important one. If we write

2(ka){ka)
(£a)* + (ka)?

~we see that under most citcumstances the fist term dominates the second for
.20y reasonable size of ws. The procedure we adopt is to treat a smooth, curved
barrier as a juxtaposition of square batsiers {Fig. 5-8). Since tansmission co-
“efficients are multiplicative? when they ate small (in effect, with most of the fux
reflected, the transmission through each slice is an independent, improbable
event), we may. write, approximately

log|T|* ~ % log] Tyumu'?
g 3
B, b

~ =2 2 Ax (k)

log| Tj% o= —2¢(24) -+ 2 log

! 8ec the WKB approximartion in Special Topics section 3.

% This statement is only correct for the most importanc exponential part, as cap be
seen from the fact that doubling the width will only approximarely square the transmission
coefficient | T2
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Fig. 5-8. Approximation of smooth barier by a juxtaposi-
tion of square potential barriers.

= —2 fdr V (2m /B V{x) — E] (5-51)

barrier

In the partial barriers, Ax is the width and (x) the average value of « for that
batrier. In the Jast step a limit of infinitely narrow barriers was taken. It is clear
from the expression that the approximation is least accurate near the “turning
points"* where the energy and potentia are neady equal, since thete (5-49) is not
a good approximation to (5-48). It is also important that Vix) be a slowly
varying function of x, since otherwise the approximation of a curved barrier by a
stack of square ones is only possible if the latter are nartow, and there again
(5-49) is a poor approximation. A ptoper tearment, using the WKB approxi-
mation includes a discussion of the behavior near the turning points. For most
purposes, it is still a fair approximation to write

| T]? ~ =2 e NTmAHWE) — H {5-52)

with the integration over the region in which the squate root is real.

D. Tunneling Phenomena

The phenomenon of particle tunneling is quite commeon in atomic and
nuclear physics, and we discuss two examples at this point.

{a) Considet electrons in a metal. As noted in our discussion of the photo-
electric effect in Chapter 1, these electtons are held in a meral by a potential,
which, to fitst approximation, may be described by a box of finite depth, as
shown in Fig. 5-9a. The electrons are actually stacked up in energy levels that are
vety dense, since the box is very wide. It is a property of electrons? that no more
than two of them can occupy any given energy level; thus for the lowest energy
state of the metal, all the levels up to a certain energy, called the Fermi energy

3 This property of electrons is described by the Pauli exclusion principle, which will
be discussed in Chaprer 8.
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Fig. 5-9. (a) Electronic energy levels in metal. Ep is the Fermi energy
and W is the work function. (4) Potential altered by an external electric
field.

(which depends on the density of free clectrons) ace filled. When the temperatute
is above 0°K, 2 few electrons are thermally excited to higher levels, but even at
room tempetature, the number is small. The difference between the Fermi
energy and the top of the well is what is required to bring an electron out; it is
the work funcior discussed in connection with the photoelectric effect. Blectrons
©an be removed by transferring energy to them, either by photons, of by heating
them. They can also be removed by the application of an external electric field &,
Cold emission occurs because the external field changes the potential seen by an

-electron from Wto (7 ~ ¢Ex) (Fig. 5-9), if the electron is at the top of the “sea”
" of levels. The transmission coefficients is

|T|? = e=2fsde 2m(W — asxyrasps

(5-53)
(A + Bx)3?
dx(A + Bx)yi? = “———7
/ 4+ By 3B/2
this leads to
| T|2 = o~ (AVII3 NEWiar (/e {5-54)

The Fowler-Nordheim formula, as {5-54) is called, describes the emission only
qualitatively. One effect, which is easily included, is the additional ateraction of
the electron back to the plate, cagsed by the image charge. The other effect,
much harder to handle, is that there are surface impetfections in the meral surface,
which change the electric field locally, and since & appears in the exponent, this
Fn make a large difference. Incidentally, we see that the exponent may be

ritten in terms of the barrier thickness ar the top of the Fermi sez, since that
thickness is given by ’

£y
I
IR

{5-55)
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Fig. 5-10. Energy diagram for tunneling between two metals separated
by vacuum, Tunneling berween metals is possible only when there are
empty states on the right. Such empty stares are created when ¢V is
applied to lower the Fermi level on the right.

The same effect appears if we bring two meral plates close together.
Figure 5-10 shows the situation both without a potential difference, and with a
potential difference. Without the potential difference, tunneling is not possible
because the levels on both sides of the barrier are filled. The effect of even a weak
electric field is to change the shape of the bartier a little (Fig. 5-10)—an effect
thet we can neglect—and to lower the Fermi sea on one side of the barrier. This,
in effect, brings some empty levels in correspondence with the filled ones on the
other side of the batrier, and now tunneling can proceed, with transmission
coeflicient

| T|2 e =2 VWD ¢ (5-56)

Such a factor acts as a resistance. Unfortunately this expression is very sensitive
to the gap separation , and since for a work function of the order of electron
volts, the sepatation has to be of the order of angstroms, it has not proved
passible to make metal plates sufficiently flat and parallel. The formula has been
applied to the interpretation of currents flowing between two plates with an
oxide between them (Ni-NiQ-Pb), where the gap can be made as small as 50 i,
and it is qualitatively correct.

An interesting effect occurs when the metal on the right is in 2 super-
conducting state. A characteristic of such a state is that above the Fetmi level
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Fig. 5-11. Enetpy diagram for tunneling from metal to superconduceor. In
contrast to the metal-meal tunneling shown in Fig. 5-10, no tenneling is
allowed into the energy gap. This affects the cutrent-voltage characteristic as
shown. :

L

there is a gap in the leve] density, that is, there are no zllowed states between an
energy Ep ~ A and Ep + A with A of the order of 10-% eV compared with the
Fermi energy Ep of order 10 ¢V, These levels do not disappear, but ate squeezed
up and down, so that the level density just below and just above the gap is very
large. If the electric field is small enough, that is, 28 < A/e, there will be no
tunneling, since there js no Place for the electrons to go. The gualicative features
. of the current-voltage relation and the energetics are shown in Fig. 5-11. These
features are in good agreement with experiment.

' (b} Tunneling is also impottant in nuclear physics. Nuclei ate very com-
plicated objects, but under certain circumstances it is apptopriate to view them
as independent particles occupying levels in a potential well. With this picture
in mind, the decay of a nucleus into an a-particle (2 He nucleus with Z = 2) and
a daughter nuclens may be described as the tunneling of an a-particle through a
barrier caused by the Coulogb potential berween the daughrer and the a-particle,
The a-particle is not view&s being in a bound state: if it wete, the nucleus
could not decay. Rather, the c-particle is taken 1o have positive energy, and its
decay is only inhibited by the existence of the battier,*

+If you find it dificult o imagine why a repulsion would keep two objects from
separating, think of che inverse process, captere. It is clear that the barrier will rend to
keep the a-particle put.
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Fig. 5-12. Potential barrier for « decay.
If we wiite
T2 = ¢ ¢ {5-57)
then

am\i2 f8 7.8 us
G=2 (,'") f dr (Z1 . ) (5-58)
ﬁg R r

where R is the nuclear radius® and & is the turning point, determined by the
vanishing of the integrand (Fig. 5.12). Z, is the charge of the daughter nucleus,
and Z, (=2 here) is the charge of the particie being emitted, The integral can be
done exactly .

j‘: B (ir _ _i_)uz _ \/E [cos-l (%)m _ (“% _ _Ib{;—)uz:| (5-59)

At low energies (relative to the height of the Coulomb barrier at r = R, we have

&> R, and then ‘
w2\ T (R)“‘—‘]
~ —_— - — | — 60
¢ 2( fit ) [2 b (5-60)

8 [f fact, early estimations of the nuclear eadjus came from the study of a-decay.
Mowadays one uses the size of the charge distribution, a5 measured by scattering electrons
off nuclei to get nuclear radii. It is not clear that the two should be expected to give exactly
the same answer.
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‘with b = Z,Zs?/E. If we write for the a-particle energy E = ms?/2, where v is its
final velocity, then

22 Zoe®
Gow T raz,Z, (i) (5-61)
h v

The time taken for an a-particle to get out of the nucleus may be esti-
mated as follows: the probability of getting through the batrier on a single
encounter is &% Thus the number of encounters needed to get through is
# = 9, The time between encounters is of the order of 2R/v, whete R is again

the nuclear radius, and ¢ is the & velocity inside the nucleus. Thus the lifetime is

T o g Al (5-62)
4 .

The velocity of the o inside the nucleus is a father fuzzy concept, and the whole

picture is very classical, so that the factor in front of the ¢¢ cannoc really be pre-

dicted without a much more adequate theory. Our considerations do give us an

-order of magnitude for it. For a 1 MeV a-particle,

2E 2E 2 3
= —_— = =" 1nLoe - o~ 1010
v 'fm LI ‘BX 4X940_43X cm/sec

A.Iso, for R we take

R~ 15X 10718 A3 cm (5-63)

#nd for A = 216 we get, for the factor in front, 2.6 X 102, We can also rewrite
G in the form

2

VI (-63)

.50 that one predicts, for low ¢nergy a’s, the straight-line plot

Gr~4

Z

VE(MeV) G-69

with the constant in front of the order of magnitude 27-28 when r is measured in
yeats instead of seconds, Figure 5-13 shows that 2 good fit to the lifetime data of
. B large number of & emitlers is obtained with the formula

1
logio — =~ const — 1.73
T

4
+E

where G, = 1.61 and C; = 28.9 + 1.6Z,*/% Thus the very simple considerations
give a rather remarkable fic to the data.

1
logn—=0G—- G
T
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With mote energetic a emission, the G facror depends on R, and with
R = ryAY%, one finds that rq is a constant, that is, that the notion of a Coulomb
barrier taking over the role of the potential beyond the nuclear radius has some
validity. Again, simple qualitative considerations exphin the data.

The fact that the probability of a reaction (e.g., capture) between nudlei
is attenuated by the facror

e—HLT/VE) (5-65)

"implies that at iow energies and /or for high Z's, such reactions are rare. That is
*. why all attempts to make thermonuclear reactors concentrate on the buraing of
hydrogen (acrually heavy hydrogen—deuterium).
1H? + (H? — ,He? 4+ » (3.27 MeV)
1Hf + H? — H? - 7 (4.03 MeV)
JHE 4 HP - Het £ 1 (17.6 MeV)

since reactions involving higher Z elements would require much higher enetgies,
‘that is, much higher remperatures, with correspondingly greater confinement
. problems. For the same reason, neutrons are used in nuclear reactors to fission
the heavy elements. Protons, at the low energies available, would not be able 1o
et near encugh to the nuclei to react with them.

E. One-Dimensional Model of Molecule

Some aspects of what gives rise to molecules are exhibited by the example
of a particle in a double potential well (Fig. 5-14). The algebraic work is greadly
simplified if we consider a square well in the limit of great depth with the width
going to zero such that For remains a constant. In thar case we get a delea-
function well, which is very easy to handle. Just to show this, consider first 2
single attractive potential well

(m /) V) = - o) (5-66)
The equation to be solved is, when E < 0,
%;) — Pulx) = — 2 8(x) n(x) (5-67)

where «* = 2m|E| /B2
The solution everywhere, except at x = 0, must satisfy the equation #Pu/dx? —~
k% = 0,and if it is to vanish at x — =4 @ , We must have

u(x) = e= x>0
= ¢ x <0 (5-68)
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Fig. 5-14. Double one-dimensional potential well. The shape of the wave
function for 2 bound state is sketched in.

The coefficients in front are the same (and here chosen to be unity—we can
notmalize afrerwards) because of the continuity of the wave function. The
derivative of the wave function is no longer continuous. As argued before

{Eq. 5-13) we have
di d
B-@)-to so

The last relarion gives the eigenvalue condition

A
—k— K= -
&
that is
A
= — .- -70
.= (5-70)
The double square well will be replaced by
A
2m/RY Vix) = — ;[S(x — a) + ¥z + a)] {3-71)

Because the potential is symmetric under the interchange x — —x, we expect
that there will be solutions of definite parity, and we will first consider the even
solutions. ‘
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t. For the even solution we write
u(x) = == x> a

= A cosh xx @a> x> —g

= gF X< —a (5-72)
and continuity of the wave funcion gives
e = A cosh kz (5-73)

Because of the symmetry, it is sufficient to 2pply the discontinuity condition
for the derivative at x = «. Nothing new will come of the application at x = —a.
We get

A
—ke=* — xA sinh ke = — 2 L (5-74)

"and the eigenvalue condition is
X
tanh kg = — — 1} (5-75)

Figute 5-15 shows chis graphically. Thete is only one intersection point of the
scurve tanh y with (A\/y) — 1. It is obvious that when y = X, che right side is zero,
whereas tanh y > 0. Thus the intetsection point occurs for y < X. On the other
“hand, since eanh y < 1, we must have (A/y) < 2 at the intersection point, thar is,

k> A (5-76)
. 2a

If we compare this with (5-70), we see that the energy for che double well is a

larger negative number, that is, the energy for the double potential is lower, Note

that this is not because somehow the strength of a pair of potentials is larger

than that of 2 single potential, s might be the case if one compared an electron

Fig. 5-15. Solution of the eigenvalue condition tanh
y=My— 1L



96 Quantum Physics

bound to two protons with an electron bound to one proton. The latger binding
is chere because, as Fig. 5-16 indicates, it is easier to accornmodate a sharply
dropping exponential to a symmetric function (here cosh %) with a discon-
tinuity in slope as given, than it is to accommodate it to an equally sharply
dropping exponential on the other side of the potential. In the real world, a single
electron bound to two protons separated by a small distance will have a lower
energy than a single proton plus 2 hydrogen atom far away, even though in the
first case chere is 2 more effective repulsion between the protons. Again it is the
way in which the wave function can accommodate itself to the geometrical
situation thet is the dominane effect.
2. The odd solution will have the form

u(x) = e~* x> a
= A sinh xx a> x> —a
= —e Tox< —a (5-77)

Again, because of the antispmmetry, it is sufficient to apply the conditions at
x = a, say. Continuity of the wave function gives

Asih kg = £ (5-78)
and the discontinuity equation reads

A
ke — gAcosh kg = — — ™ (5-79)
@

Fig. 5-16. Bound state wave functions for single and
double delra function artractive potentials.
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tanh y

il 4

" Fig. 5-17. Solution of the eigenvalue condition
ctanhy =(Af) — 131 .

Combining the two yields the cigenvalue condition

R
cothke = — — 1 (5-80)
Ka
- Figure 5-17 shows 2 plot of the reci_procal of this equation, thar is, tanh yagainst
- (\y — 1)7. There will only be an intersection if the slope of the former at the
" origin is latger than that of the second, that is, if

A1 (5-81)

Aty = A/2 the term (\/y — 1)1 js already at 1, so that the intersecrion had to
occur for y < A/2, that is,

K< > {5-82)
2z

Thus the odd solution, if there is a bound state, is less strongly bound than the
even solution. The wave function, which has to £o through zero, is forced to be
steep berween the wells, and thus can only accommodate to a less rapidly
falling exponential. Depending on the size of A, there may of may not exist an

‘excited state. .
Let us now consider a supetposition of the ground state #.(x}, with energy
E, and the excited stare #,(x), with energy E, (e and o stand for even and odd)

Vx) = #(x) + awlx) {(5-83)

L]
with o chosen 50 as to make [ dx|(x)]? as small as possible, that is, with

*
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the “electron” localized, as far as possible, on the right side. After a time #, the
wave function will be )

H0ed) = (%) e 7 EVE 4 fx) e

o I [ () o e EN ] (5-84)

that is, the phase relationship between the two parts will change. In particulac,
after & time such that

BB _ (5-85)

the “eleceron” will be localized on the left side in exactly the same way that it
was localized on the right at 7 = 0. Thus there is an oscillatory behavior, which
may be described by the electron going back and forth between the two po-
tentials, with frequency

E, — E,
3

w = Juo, = 2 (5-86)
We shall leave it to the reader to convince himself that the period associated
with the frequency wo. is, for large ), approximately equal to the “tunneling
time" across the bartier separating the two wells, as might be determined from
the material presented in Sections C and D. This is a model for the ammonia
molecule, There are ways of measuring such a feequency with high precision,
and thus we have at our disposal a very accurate “'clock.”"®

F. The Kronig-Penney Model

Metals generally have a crystalline structure, that is, the ions are arranged in
a way that exhibits a spatial periodicity. This periodicity has an effect on the
motion of the free electrons in the meral, 2nd this effect is exhibited in the
simple model that we will now discuss.

‘The periodicity will be built into the potential, for which we require that

Vix+ a) = ¥(x). (5-87)

Since the kineric energy term — (R2/2m)(d?/dx?) is unaltered by the change
x — x + @, the whole Hamiltanian is invariant wnder displacements by a. For the
case of zero potential, when the solution corresponding to a given energy
E =R/ 2mis

¥x) = &%= (5-88)

® For a discussion of the ammoniz molecule, see R, P. Feynman, R. B. Leighton, and
M. Sands, The Feynman Lectures on Physics, Vol. 111, Addison-Weesley, Reading, Mass., 1965.
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_the displacement yields

Yx + a) = glhiste) = gike y(x) (5-89)
~that is, the original solution multiplied by a phase factor, so that
W+ a)[* = [Y(x}]? (5-90)

- The observables will therefore be the same at x s at x + «, thac is, we cannot rell
whether we are at x orat x + 4. In our example we shall also insist that $(x) and
Wx + a) differ only by a phase factor, which need not, however, be of the
[m el‘ka.

To simplify the algebra, we will take a series of repulsive delta-function

V(x) = g% : 3(x — na) (5-91)

R—

Away from the poiats x = »s, the solution will be that of the free particle
equation, that is, some linear combination of sin &x and cos &v (we deal with
teal functions for simplicity). Ler us assume that in the region R, defined by
“{r~ 1) & <x < na, we have

¥(x) = A, sin k(x — na) + B, cos Mx — na) (5-92)
and in the region Rny, defined by nz < x < (# 4 1) 2 we Luzve
W) = Aapusin lx — (2 + 1) 4] + Bapi cos Blx — (n + 1) 4 {5-93)
Continuity of the wave function implies that (x = 74)
—Anyy 5in ki + By cos bz = B, (5-94)

and the discontinuity condition (5-13) here reads

.éA.H_]_ cos ka + AéBw.{..] sin £z — éAﬂ = b’ Bn (5'95)
[

A little manipulation yields
Aays = A 05 ka + (g cos ka — sin k2) B,

Bnyy = (gsin B2 + cos 4a) B, + A, sin ks (5-96)

where g = M ka,
- The requirement that the wave functions (5-92) and (5.93) be related by
V(Rua) = e Y(R.) (5-97)

is satisfied if
A'H.] = ¢i® An

Boyy = é* B, (5'98)
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When this is inserted inta (5-96), we find a consistency condition that reads
(¢ — cos ka)(e** — g sin ka — COS ka) = sin k(g cos k2 — sin ka)

that is,
2t — %2 cos ka+ gsinka) + 1 =10

Mulriplication by e* gives
cos ¢ = cos ka + } g sin ba (5-99)
* If we take periodic boundary condi¥i0n5 for our "crystal” 50 that
PRax) = ${R) ' (5-100})
then it foliows from (5-08) that ¢iV¢ = 1, that is,

2%
N

¢ = m m=0,+1, £2,... {5-101)
We denote ¢ by g4, where ¢ is the wave number of an elecron in 2 box of length
Na, with periodic boundary conditions and without any potential, that is,
without any ions present. Thus (5-99) should be rewritten in the form

sin k4

fy o (3-102}

cos ga = cos ka + 3

This is a very interesting result, because the left side is always bounded by 1,
that is, chere ate restrictions on the possible ranges of the enctgy E = F*E*/2m
that depend on the parameters of our “crystal.” Figure 5-18 shows a plot of the
function cos x 4 ) sin #/2x as a function of x = ka. The horizontal line tepre-
sents the bounds on cos ¢s, and the regions of x, for which the curve lies outside
the strip, are forbidden regicns. Thus thete are aliowed energy bands sepatated by
regions that ate forbidden. Note that the onset of a forbidden band corresponds
to the condition

ba = nr n= 1, 2, £3,..- (3-103)

This, however, is just the condition for Bragg refiection with normal incidence.

The Kronig-Penney model has some relevance to the theory of metals,
insulators, 2nd semiconductors if we take into account the fact (to be studied
laer) that energy levels occupied by electrons cannot accept more electrons.
Thus a metal may have an energy band partially filled. If an external field is
applied, the electrons are accelerated, and if there ate momentum states avail-
able to them, the electrons will occupy the momentum states under the influence
of the electric field. Insulators have completely filled bands, and an electric
field cannot accelerate electrons, since there are no neighboring empry sctes.
If the electric field is stong enough, the electrons can “jump” actoss a for-
b dden enerev gap and go into an empty allowed energy band. This con:esmds
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A sin x
4 A SIDX
A cos x + o

" Fig. 5-18. Plot of cos x + (3/2)(sin x/x) a5 a function of x. The horizoatal lines
" represent the bounds =+1. The regions of x for which the curve lines ourside the
strip ate forbidden.

to the breakdown of an insularor. The semiconductor is 2n insulator with 2 very
narrow forbidden gap. There, small changes of conditions, for example, a rise in
temperature, cen produce the “jump’™ and the insulator becomes a conductor.

G. The Harmonic Oscillator

As our last example we consider the harmonic oscillator (Fig. 5.19). In
contrast to the examples dealt with until now, the differential equation chat
needs to be solved is nor so trivial, and one reason for discussing this problem is
to learn something about the technique for solving such equations.
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A vix}

Potential

|y tx2|?

-——n=3

- = 2

-= —n=1

- -————n=0

X

Fig. 5-19. Harmonic oscillttor eigenfuncrions, and probability densities
for the lowest fout eigenvalues. Note the evenness and oddness properties of

the eigenfunctions.

The classical Hamiltonian is of the form
e Lo

so that the eigenvalue equation is
X

2m  dx*
We introduce the fiequency of the oscillator
w=Vin
write :

_2E
= e

and change variables to

+ $katu(x) = Ealx)

(5-104)

(5-105)

(5-106)

(s-107)

(5-108)
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_to finally ger the simpler form of the equation

X

2t le=Mu=o (5-109)
Y

All quantities that appesr are dimensionless.

_ For any eigenvalue ¢, as 3 — «, the term involving « is negligible, and we

must therefare require that u(y} asymptotically satisfy the equation

dﬂ:;z(y) — Yu(y) = 0 (5-110)

‘We multiply by 2duc/dy, which allows us to rewtite this in the form

d fdu,\® d

r (_d;) — > (%) = 0 . (5-111)
6:, equivalently,

d | fdu\?

dy I:( ‘;;o) B fﬁuz] = Ty G112

is sirplifies a great deal if we neglect the term on the righe side of the equa-
Kion. We assume that this can be done, and then check that the assumption was
correct. If we drop the right side, we find thar

.‘%}_ = (C + yug?)H?

where C is 2 constanr of integration. Since both woy) and duy/dy must vanish ar
infinity, we must have C = 0. Thus

du .
7; = dyuy (5-113)

whose solution, acceptable at infinity, is

wmly) = v (5-114)
We can now check that 2yu? = 2y e~+* js indeed negligible compared with

d d : :
oy Ul = 5 e i

for latge y. If we now introduce a new function h(%), such thar

#(y) = h(y} ev'r2 (5-115)
then the differential equation is easily seen to take the form
Fh()  dhy)

4y Y g DA =0 (5-116)
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This may not seem like much of a simplification, but we have accounted for the
behaviot at infinity, 2nd we can now lock at the behavior near y = 0. Let us
attempt 4 pOWST series expansion

@

My = 2 amy™ {5-117)

n=>0
When this is inserted into the equation, we find that the coefficients of y™
satisfy the recursion relation ’

(m+ Dm + 2) dnyz = (2w — e+ 1) 2m (5-118)

Thus, given ag and 4, the even and odd series can be generated separately. That
they do not mix is a consequence of the invariance of the Hamiltonian under
reflections. For arbitrary e, we find that for large m (say = > N)

2
gt O iy, (5-119)
m
This means that the solution is approximately
k(y) = {(a polynomial in ¥)
2t 2

K e ]

2 .
+ an |:]N + ﬁy.\+2 +

where, for simplicity, we have only taken the even solution. The seties may be
wiitten in the form

, ﬂ _ (yI)Nﬂ—l (yz)Nﬂ Uﬂ)MHI
Ny ( 2 1)![(N[2 “ o + (N/2 + 1) T ]

w!ich is of the form of a polynomial 4 a constant X y? 2%, When this is inserced
into {5-115), we get a solution that does not vanish at infinity. An acceptable
solution can be found if the recursion relation terminates, that is, if

e=2N+1 (5-120)

For that particular value of e the recussion relations yield

NN—2)...{N—2k+ £(N — 28+ 2)
@y
(28!

ag = (=2)% {5-121)

and .
(N+F1D(IN—1)... (N— 28+ 35(N—-26+1)
(26 + 1)

duqr = (—2)F a1 (5-122)

Thus the results are:
1. Thete are discrete, equally spaced eigenvalues. (5-120) tanslates into

E = fwlr+ 3 (5-123)
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a form that looks familiar, since the relation berween energy and frequency is the
same as that discoveted by Planck for the radiation field modes. This is no acci-
dent, since 2 decomposition of the electromagnetic field into normal modes s
+ essentially 2 decomposition into harmonic oscillators that are decoupled,

2. The polynomials A(y) are, except for notmalization constants, the
Hermite polynomials H.(3), whose properties may be found in many textbooks
We are not reelly interested in these details, and we will solve the harmonic
oscillator problem again, so that we do not pursue chese matters. It is, however,

¢ - wotth poinung out that the reason for the importance of the harmonic oscillator

- in quantum mechanics, as in classical mechanics, is that any small perturbation
of a system from ics equilibrium stace will give rise to small oscillations, which
are ultimately decomposable into normal modes, that is, independent oscil-
lators.

3. As (5-123) shows, even the lowest state has some energy, the zero-poins
energy. Its presence is 2 purely quantum mechanical effect, and can be interpreted
in terms of the unceruainty principle. It is the zero -point energy that is responsible

- for the fact that helium does not “‘freeze’”” at extremely low temperatures, but
remains liquid down to temperatutes of the order of 103 degrees Kelvin, ac
normal pressures. The frequency w is larger for lighter atoms, which is why the
effect is not seen for nitrogen, say. It also depends on detailed features of the

. interatomic forces, which is why liquid hydrogen does freeze.

Ptoblems

1. Consider an arbitrary potentia! localized on a finite part of the x-axis.
The solutions of the Schrddinger equation to the left and to the right of the
potential region ate given by

ikx —ikx kY —ihx
AetET 4 pe /\ '~ Gz 4 pe

respectively. Show that if we write

C = S]_[A + SuD
B = 54 4 5D

that is, relare the “outgoing” waves to the “ingoing” waves hy

(5)-( ()
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thar the following relations hold
tslllz + |51z|’ =1
|Sa]? + [S2s]?
Susis + SuSy: = 0

il
-

This is equivalent to the statement that the mairix
$ = (Sll Sl%)
S Su
is unitary.

{Him. Use Aux conservation and the possibility that A and D are arbitary
complex numbers.)

2. Calculate the elements of the scatcering matrix, Si1, Sz, Su, and Sy for
the potential

Pix) =0 < —a
=W —g<x<La
=0 x < d

and show chat the general conditions proved in Problem 1 ate indeed sarisfied.

3. The elements Si1 . . . S are funccions of &. Show that

Su{—4) = Su(k)
Su(—k) = S{z(k)
Ss(—4) = S;(k)

that is, that the matrix has the property
S(—&) = S*(&)

4, Consider the odd solution to the potential well {e.g., Eq. 5-39), which

can be used as 2 model for a three-dimensional potential well with zero angular
momentum. If the range of the potential is given to be 1.4 X 107*? cm and the
binding energy of a system is —2.2 MeV, and if the mass to be used is 0.8 X
10~ gm, find the depth of the potential in MeV.
[Fings. (1) First, convert diseances and masses into units of some mass, so that
the range is 4(i/uc) and the binding energy is of the form e(uc®). A convenient
mass might be the one given. (2) The binding encrgy is vety small, so that it is
almost zero, If it wete zero, condition {5-41) would yield V. Expand about
this value.]

5. Withour acrually solving the Schrédinger equation, set up the solutions
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so that only the matching of eigenfunctions and their derivatives femain to be
E- done for the following situations:

e % —e]

‘with the following conditions (a) flux %i/m would be incident from the left if
the potentials were absent; take E < ¥y

V oo

!
l

x=0 a

- X

fh}

- with Aux of magnitude fik/m incident from the right if the potential were absent,
E < Vo

6. Show that the conditions for a bound swate (5-35) may be obtained by
requiring the vanishing of the denominators in (5-25) at & = ix. Can you give an
atgument for why this is not an accident?

7. Consider the scattering matrix for the potential
A
Vix) = — 8(x ~ b)
a

Show that it has the form

Lkd __R__ eﬁZikb
2ika — X 2tka ~ A
S Zins 25ka

2eka — A 2ika — A

Prove that it is unitary, and that it will yield the condition for bound states when
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the elements of that matrix become infinite. (This will only occur for A < 0.)

8. Calculate o in Eq. 5-83, which will {ocalize the particle as far as possible
on the right side of the origin.

9, Work out in detail the wave functions for the three lowest eigenfunc-
tions of the harmonic oscillator.

10. Considet the hatmonic oscillator potential perturbed by a small cubic
term, so that

Vix) = jmet (x2 - lx“)
a
If 2 is large (compared to the characteristic dimension (%/mw)'/?, estimate how
long it takes a particle in the ground state to “'leak our’ to the region on the far
right. Note that with this percurbation alone, there is no lowest energy state,
since for latge enough x the potential becomes arbitrarily deep,

11. Consider the potential shown below

LindalV
-__.E__.. ¥ix)
o= X
R
with
RE(L 41
Vix) = [7-*—,) x> Ry
2mx*

Estimate the lifetime of a particle of energy E in this potential. (The outside
potential represents a centrifugal barrier in a three-dimensional world.) Exptess
yourt resul in terms of the dimensionless ratio /&R, where E = k#E?/2m. Take
31,

12. Consider the Kronig-Penney potential with

A= 3w
{a) Make a derailed plot of
A osin x
cos x + —
2 x
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as a function of x = 4a.

(b} Show that forbidden energy bands start just above bz = r.
(c) Show that che allowed energy bands get narrower as ) increases.
(d) Ploc the encrgy i%2/2m as a function of 4.

13. Consider the model of a molecule defined by (3.71). Show that when
X is large,

Woe O At

gt
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chapter 6

The General Structure of

. Hug(x) = Englx) (6-1)
_ ta _1{* j_)’ !
H—2m+V(X)—2m(:. =) tve (6-2)

wete obtained for a number of physically interesting Hamiltonians. The Hamil-
tonian operator H was emphasized, because it is this operator that determines
the time development of a system. The initial state of & system can be described
by aay wave function y{(x) ,which is only constrained by the requirement that

f AP () plx) < @ (6-3)

that is, that it be square integrable. The (x) can, without loss of genetality, be
multiplied by a constant, so that it is narmalized

Ja v = (64
The time-dependent Schrédinger equation

R0

7 op YRR = Hilx) (6-5)

-describes the time development of the wave function, and given the energy
eigenfunctions wz(x), this problem can be soi‘ved immediately. What goes into

111
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the solution is a general theorem that states: an arbirrary function ¥(x) can be
expanded in a complete set of eigenfunctions of H, that is,

Wx) = 2. Cpuplx) (6-6)

If we choose the eigenfunctions of H to be normalized, and if we take into
account that the eigenfunctions corresponding to different values of E are
orthogonal, so that

] ug (%) ugn(x) dx = dwge (67
a result proved in Appendix B, then

j ¢ 43 (3) W)

1

Cg f #p() wg(x) dx

i

>
]
> Cg bznr

z
= Cp (6-8)

that s, the expansion coefficients are determined. Now the time dependence for
each epetgy eigenfunction is

wp(x5) = uglx) e AR (6-9)
. as can easily be seen when the above is substituted into (6-3), and hence
Ul = 2 Cr e B gp(x) {6-10)
E

It should be noted, as we have learned from c:)'nsideting a large number of
examples, that the energy eigenvalues may take on discrete values and/or con-
tinuous values. We speak of the spectram of cigenvalues being discrete and /ot
continuous. Thus (6-6) really reads

$lx} = Zﬂ: Cattn, (x) + f dEC(E) ug(x) (6-11)
corresponding to the two possibilities, and (6-7) reads
f 1 (%} 0a,(x) i = Bun (6-.12)
for the discrete values, and
f u;(x) up(x) dx = 8E — E) (6-13)

for the continuous ones. This is not the only possible choice. As we saw in our
solutions of problems with potential wells of barriers, the solutions of the energy
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eigenvalue equation can be made up of functions that far from the potential are
momentum eigenfuncrions. There is 2 relation between the encrgy and the
momentum (E = p?/2m away from the potential), and it turns out to be possible
to notmalize the solutions so that the right side of (6-13) is replaced by 5(p — p*)
or, in three dimensions by é(p — p’).

We also postulated an intetpretation for the expansion coefficients; [ Cgl?
is the probability that an energy measurement of the state described by ¥{x)
yields the particular eigenvalue E. Any particular measurement can only yield
an eigenvalue, but in contrast to classical physics, we cannot predict which one
je.will be: we only have the probability that it will be a particular value E. In
quantum mechanics, as in classical theory, a measurement must be repto-
-ducible to have any meaning. Thus if an observer, upon making a single meas-
urement on a system finds that the energy is, say, Ei, then a subsequent energy
- peasutement for that system must again yield E;. Hence, after the fitst measure-
: ment, the state of the system is described by 2 new wave function, namely the
eigenfunction g, (x); only then will a repeated measurement yield E, with
probability 1. The expression “a measurement projecrs a state inco an eigenstate
of the observable™ is sometimes used.

The expansion theorem may be viewed asa generalization of the expansion
- of a vector A in terms of orthonormal unit vectors in 20 N-dimensional vector

- space

A=+ asis + ...+ aniy - {6-14)
The unit vectors 2 satisfy
i1 = &y (6-15)
and are the analogs of xg(x) . The coefficients 4, ate given by
& = iy A {6-16)

and they are the analogs of the Cz. We shall often use the language of vector
spaces in talking about quantum mechanics. Thus we shall often refer to the
coefficients Cg as the “projections” of ¥{x) “along” #x(x}, and the quantity

Co = [ () $ix) de (617

will often be called 2 sealar product. We will, following Dirac, introduce a con-
venient notation for the scalar product:

f 65 9 de = {9l4) 6w

The similarity between the acceptable wave fuactions, and the collection
of all N-dimensional vectors is actually quite deep. Just as the sum of any two
vectors yields a vector

A4+ B-=2C( {6-19) .
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and the product of a vector with a number is again a vector, 50 will the sum of
any two square integtable functions again be a square integrable function, as
will the product of a square integrable function with an arbitrary (complex)
number. In both ases, provided we define the notion of a scalar product

(A|B) = A'B (6-20)

in one case,
@) = f dx ¢*(x) ¥(x) (6-21)

in the other, we have a linear vector space. The only difference is that in quantum
mechanics, the vector space is infinite dimensional. In fact, since in (6-21) it is
the continuous label x that plays the role that the index 7 plays in

N

AB= 2 ab (6-22)

-1
we see that the space is continuously infinite. This does mean that a proper
mathematical treatment of such vector spaces is much mare complicated, since
questions of convergence of integrals like {6-21) have to be faced, and in con-
trast ro a finice dimensional space, proving completeness is much more difficuit.
In mathematical parlance, the squate integrable functions form a Hilbert space,
and the energy eigenfunctions form a compiese set of basis vectors.

In vector spaces, be they finite dimensional ot more general, an operatot is
defined to be something that transforms a vector into another vector, or in this
case, a squate integrable function into ancther square integrable function. We
are actually interested in finesr operators that have the property that

H{a¥y + fgs) = aflp + BH (6-23)

The simple example discussed in Chapter 4 showed that the expectation value of
H, defined by

(H)y = j W) H(x) dx (6-24)

was real. This is to be expected for a physically measurable quantity, and it
generalizes to the statement that the expectation value, for all ¥{x), of an operator
representing an observable quanticy, has to be real. We called operators that
had this property, hermitian. :

For an arbitrary linear operator A, we have

() = f V¥(x) AY(x) dx (6-23)
and

(An* = f [Ap()]* (=) dx (6-26)
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The aperator A" (pronounced A-dagger) is defined by the relation
[t v e = [y a9

and 1s called the hermitinn conjugate operater. For example, the relation

ﬁ)* _[ i*_fxmdl,_f tdl'
f‘i’f(dr ¢ = dxdx(!l'/\#’) dﬂ"dx* dx'ﬁdx

shows that
(L) -2
ac] dx

_Simi!ar!y, the hermitian conjugate of the cperator

dz
(;&"; - ;:e"=)

d?
R * ,—ix
—a%e
(a’x2
"For a hermitian operator

W)y = f [HE(9]* ¥ix) dor

is easily shown ta be

- [ () HH) d
= (H)
f V) o) e

and since this is true for all Y(x), we say chat

H' =H

The Dirac notation for scalar products that involve operators is
[ 869 s = 161 410

Thus!
@A)y = f [A¥ ()] ¢(x) dx

115

(6-27)

(6-28)

(6-29)

(6-30)

! The definition of At in (6-27) only involved the expectarion value of A. It is easy
to check, by writing ¥(x) = #(x} + A 2{x} with X an arbitrary complex number, that (6-27)

implies the step between line one and line two in (6-31).
L
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f V) Alg(x) dx
W) Ate) (6-31)

The reason for our dtive toward generality is, as already seen, the fact that
H is pot the only operator of interest, Other physical observables, such as the
MOMENtUM OPELAtor pep, parity, position, and so on are represented by hermitian
operators. We shall use the letrers A, B, C, ... for operators, and since we are
only dealing with operators that tepresent observables, they ate all hermitian,
that is,

A=A
= B
and so on.
All hermitian operators have eigenfunctions, that is, there exists a set of
vectoes that have the property that the operator acting on them reproduces them,
except for a proportionality constant, the eigenvalue

Aus(x) = aug(x) : - (6-33)

The spectrum of eigenvalues, as for the Hamiltonian, may be discrete and/or
continuous. The spectrum of momentum eigenvalues was found to be con-
tinuous; that of che parity eigenvalues, =1 was discrete. As for the energy eigen-
functions, those corresponding to different values of # are orthogonal, and the
others may be chosen 10 be normalized, so that we have

f #*(x} uy(x) dx = Blaa’) (6-34)

oI, in Out neéw notation
{#ajtta) = Ba,2’) (6-35}

Here 5(a,4") may be a Kroenecker delta d.r if the cigenvalues are discrete, or a
Dirac delta function 8(z — a’) if they are continuous. It follows from (6-33)
and (6-34) that

a= [ #,* (%) Aug(x) dx (6-36)
that is,
a= (o Alna) (6-37)

Thus the eigenvalues of a hermitian operator must be real. Since the results of an
individual measurement of the observable described by A must be one of the
eigenvalues, this must be so.
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Just as for the Hamiltonian, we found in Chapter 4 thar the eigenfunctions
of other hermitian operators also form a complese ser, so that the expansion
theorem

Wx) = X Condlx) (6-38)

Ca= [ 4%(0) Ylx) dic = (atal¥) (6-39)
~'€ho]ds.l The interpretation of C, is again that of a produbilisy amplitude, chat is, [Cal?

the probability of finding the eigenvalue # in making 4 measurement of A on a
ystem described by y(x). Again, after 2 measurement, reproducibility requires
that the system be found in the eigenstate #.{x). .

.. In both the problems discussed in Chapter 4, the particle in the box, and
~the free particle, we found that the eigenfunctions were simultaneous eigen-
functions of H.and another operator, parity in the first case, momentum in the
second, and we saw that in both cases the additional operators commuted with
‘H. Let us now examine the general conditions under which this happens,

The eigenfunctions #,, corcesponding to the eigenvalue 2 of the opetator A,

Analx) = aua(x) (6-40)
w;vill be simultaneous eigenfunctions of another operator B, whep
Bra(x) = bu,(x) {6-41}

This, however, implies that

wﬂﬂa(x) = Abuy(x) = bAu(x) = abu,(x)

BAuy(x) = Baus(x) = aBufx) = abu,(x)

and

that is, that
(4B — BA) ua(x) = 0 (6-42)

_If this wete to hold for just one «,, it would not be very interesting, but if it
holds for the complete set x,, then it means that for all square integrable func-

tions Yfx) = 3. Cottz(x),
2_ G AB — BA) nix) = (AB - BA) > Caral)

= {AB — BA) y(x} = 0 (6-43)

that is, the operators commute

[ABl = a (6-44)
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Conversely, if we have two hermitian opetators A and B that commute,
so that (6-44) holds, then

ABuy(x) = BAug(x)
= aBu,(x) (6-45)
that is,
A[Buo(x)] = a[Bui(x)] (6-46)

Thus the function Bug(x} is also an eigenfunction of A with eigenvalue 4. i
there is only one eigenfunction of A corresponding to the eigenvalue 4, then
this implies that B,(x} must be propottional ro 1,(x), that is,

Bruu(x) = bua(x) (6-47)

“Then #,(x)} is a simultaneous eigenfunction of A and B, This situation, in which
the eigenfunctions of A ate not degenerate, is the one that we saw for the particle
in the box, If, on the other hand, there ate two eigenfunctions of A correspond-
ing to the cigenvalue 2, that is, we have a twofold degeneracy

Au(x) = aul (%)
AP (x) = auP(x) (6-48)
a situation illustrated in che free particle example, then we can only assett that
BuP(x) and Ba®(x) must be linear combinations of #{”(x) and w2 (x):
BulP(x) = bueelP(x) + braul (%)
B () = b {x) + b () (6-49)

It is evident, however, that we can take linear combinations of these equations to
obtain equations of the type

Bri(x) = b (x)
BeP(x) = b (x) (6-50)
For example,

B + nat®) = (bu + Mom) 28" + (bis + Nom) 47
= b + W)
provided we choose h such that
b[? + MZI -
b -+ M
This is a quadratic equation and there will be two values of X, corresponding to

the two cigenvalues 4. It is more appropriate to denotc the simultaneous cigen-
funcrions of A and B in (6-50) by 38/(x) and 45 (x). Since these comespond to

1

A
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different eigenvalues of the opetator B, they will be orthogonal to each other.
In practice, for twofold degeneracy, the degenerate eigenfunctions of A, if they
are taken to be orthagonal to each other (e.g., &= and +—*+ for the free particle
case), will automatically be eigenfunctions of B.

Even after finding eigenfunctions of A and then making linear combinz-
tions that are eigenfunctions of a commuting operator B, there may srill be some
-degeneracy, that is, there are several eigenfuncedons of A and B simultaneously,
“with the same # and #. This means that there must be a third opetator € thac
commutes with both A and B, and the functions can be recomhined to be
simultaneous eigenfunctions of A4, B, and € whaose eigenvalues distinguish the
degenerate eigenfunctions of A and B. This will g6 on until there is no more
degencracy. The ser of mutually commuting operators A, B, G, . . ., M of which
our set of functions is a set of common eigenfunctions is called & complete set of
commuting ohiervables. We have

[4, Bl=[4, C=...=[4 M =0
(B, C]=[B, D]=...= (B, Ml =0 (6-51)

and so on.

Angy, o) = attyy ()
Bty p(x) = bug, %)
M”«b.,_m(x) = m”ab...m(x) (6'52)

The state described by #gp....n(x) has definite values of the observables A, B,
C, ..., M. This is the largest possible amount of information that we can have
about a system all at once. The reason is that if we consider another operaror
that is not some function of the opetators A, B, . . ., M (since these commure,
such 2 function is unambiguously defined), then a measurement of it will not
give a sharp value for the state #ap...m(x). In general, if two operators do not
commute, then a type of uncertainty refation cannects the precision with which
the two observables can be determined.

To demonsteate this, we must first agree on a definition of uncerrainty.
A natutal definition is

(AA)? = (A2 — (A» (6-53)

also called the dispersion. It has the advantage that it does not vanish even if

{4) = 0, and it vanishes if the expectation value is taken in an cigenstate of A.
Note that we may also write chis as

(AAP = {(4 ~ {AN*) {6-54)
singe

(A° — 24{A)y + (AP) = (4*) — (A)(A)
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This shows that (AA)? deals with the magnitude of fluctuations about the mean.
Tt is straightforward to show (see Appendix B) that

(AA)(aB) — (G[4.B]) > 0 (6-35)

Thus for x and p, for which [x.p] = /fi, it follows that
H

fi
(ax)apy 2 -4 _ (6-56)

Notice that in the derivation no use was made of wave properties, x-space or
p-space functions, or particle.wave duality. Our result depends enmely on the
operacor properties of the observables A and B.

Let us now turn to the impottant question of the classical limit of quantum
theaty. To do this we must first study the time development of expectation
values of operators. In general, the expectation value of an operator changes
with time. It may change with time because the operator has an explicit time
dependence, for example the operator x + p#/m, and it also changes with time
because the expectation value is taken with respect to a2 wave function that
itself changes with time. If we write

() = [ et) Ap(ed) d (657)

then
2y = [ S vt ax

Ot (x8)
+ f T Ay(x,p) dx

o [ 42D
or

(2 s s
f‘p*(x,),q( HIP(”))

24 if .
( > ) ; f U*(x,0) HAY(x,0) dx

- f P¥Ced) AHY() de
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that is,

04

4 | i
;(A ho= <?>l + r3 ([H,A] ) (6-58)

In the derivation we made use of the fact that H is a hermitian opetator, We
obsetve that if A hss no explicit time dependence, then the change of the
expectation value for any state is

d i
I (4d = 1 {H,A] ). (6-59)

If the operatar commutes with H, then its expectation value is always constant,
that is, we may say that the observable ic a constant of the motion. If the Hamiltonian
is one of the complete set of commuting observables, then all the others ate
constants of the motion. .

Let us consider successively A = xand A = p. We first have

d i
4 0= 7 @D

(8 )

* Now x commutes with any funcrion of x,
[iz)x] = 0 (6-60)
0 that we only have to calculate
[2x] = o] + o] p

= %E P {6-61)
Thus we obtain
4 ?
Py (o) = (g) (6-62)
Next we have
oy {2
o= (L + v}
= — 5 (Ve (6:63)

since p? and p evidently commute. To evaluate the last commutaror, we note that
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V() () — Vix) pllx) = — — [V 2] — — V(x) - ib(x)
i dV{x)
=75 ¥ (6-64)
so thar
d|
vl = 22 (©65)
and thus
d _ dV(x)) _
2 o= - (") (666
We may combine (6-62) and (6-66) to obtain
e )= — (‘f%): (6:67)

This looks very much like the equation of motion of a classical point particle
in a potential V()

dxa_ dV(x)

m prii s {6-68)
The only thing that keeps us from making the identification
Xa = {x) {(6-69)
is that
dV)
#= - F({x)) 6-70
(%) = 3 70

Under citcumstances where the above inequality hecomes an approximate
equality, the motion is essentially classical, as was first noted by Ehrenfest. This
requites that the potential be a slowly varying function of its argument. If we
write

F(x) = — d[;? (6-71)
then
TR Gl -.3) i
Flx) = F((x) + (x — {x)) F'{{x)) + o Frix)n) + ...

e
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. If the uncemainty (Ax) = ((x — ()2} is smail, and the higher terms in the
expansion can be neglected, then we have

(Flx)) = F((0)) + {x — (x)) F'({x))
= F({x)) (6-72)
It is indeed true chat even for electrons and othet subatomic particles, (6;72) cn
be valid. For macroscopic fields (6-72) is 2 good approximation, and this allows

us to describe electron o proton orhits in an accelerator by means of classical
equations of motion,

Problems

1.'If A and B are hermitian operators, prove that (1) the operator AB is
only hermitian if A and B commute, that is, if AB = BdA, and (2) the operator
(A + B)® is hermitian.

- 2. Prove that A 4+ A" and #A — A") are hermitian for any operator, as
is AAt, :
3. Prove that if H is a hermitian opetator, then the hermirian conjugate

opetator of ¢ (defined to be 37 i"H*/n!) is the operator 2.
n=0

4. Prove the Schwartz inequality

W) sle) = | (plo)2

Note that this is equivalent to cos? # < 1 for three dimensiona! vectors,

{(Hint. Consider (y + Ap|¥ + hé) > 0and calculate the value of A that mini-
mizes the Lh.s.)

3. Consider Eq. 6-38 and 6-39. Calculate {p|¢} for an arbitraty ¢ in terms
of {p|w,), and show that it is possible to write

@l¥) = 2 (lua) (ueld)

In a sense the sum over a complete set of
2 |0 )t
a

is equivalent to the unit operator.
7. If A is hermitian, show that (A2) > o,
8. Consider the hermirian opetator H that has the property that
' =1
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What ate the eigenvalues of the operator H? What are the eigenvalues if H is not
testricted to being hermitian? :

9. An operator is said to be unitary if it has the property that
gt = U0 =1

Show that if {(¢|¢) = 1 then {Lg|E) = 1.
10. Show that if A is hermitian, then ¢ is unitary.

11. Show that if the {x,] form an orthonormal complete set, with

{(#afupy = B0
then the set
lea) = Ulza)
with U unitary is also orthonormal. (The meaning of the above is a unitary
operator acting on a set of “basis™ states yields another set of “basis’ states.)
12. Use the definition of Ax and Ap given in (6-34) to show that
Ap Ax ~ Fin
for a particle in an infinite box in the state characterized by the quantum pum-

bert n.

13. Show that if the hermitian conjugate operator A" is defined by (6-27),
then

f du[Ap(x)]* ¢(x) = [ dcp*(x) AW(x)

(Hint. See footnote 1, p. 115.)

14. Use the commutation relations between the momentum p and the
position x to obtain the equations describing the time dependence of {x) and
{p} given the Bamiltonians

2
@ H=L 4yl + o + 9
2m
. 4
(b} =, Hamet =

Solve the first set of equations (Hamiltonian {a)).
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chapter 7

Operator Methods in Quantum
Mechanics

The discussion of the general structute of wave mechanics placed equal
- weight on the operators that represent the observables, and on their eigen-
_ functions. Although the latter were at one point described as analogous to an
~ orthonormal basis of unit vectors in an N-dimensional vector space—which
would certainly downgrade them in impottance—they, tather than the opetators,
seemed to play the leading role in our discussion of the physical problems in
. Chapter 5. In this chapter we will show, using 2 simple exampie, (a) that one
can go very far toward finding the eigenvalue spectrum using the operators alone,
and (b) that the description of eigenfunctions as 2 basis can be made a little
more abstract. The latter is important because so far we have only considered
functions that depend on x of on [ We shall sec later that there exist observables
‘that cannot be associated with x-'space in any direct way, and for these a more
- abstract notion of eigensiare must be developed. These remarks will become
somewhat clearer in the course of the solution of our example, the harmonic
oscillator problem
The Hamiltonian has the form

P?
H= "—4 tma%* (7-1)
Zm
whete x and p are aperators. We do not insist chae P be represented hy (£/4) (d/dx).
The only vestige of the explicit tepresentation that we obmined in Chaprer 3 is
the statement of the fundamental commutation relation

[px] = E {7-2)

2

! There ace few problems that ate exactly soluble, whether as differential equations or
in operator form. This example is the simplest and thus mose suitable for our purposes,

127
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Classically, the Hamiltonian could be factored into

ek e
H“"( 2 'v%)(\fx+'V2m)
but because p and x do not commute, we have
f@ R J”L“’ . P
w( 2x :\/Zifz—w)( 2x+z‘/%)

L
m+2xz Z(Px xp)

= H — jfw {(7-3)

Let us now introduce the notation

A= @ x4+ i P—
\ 2 ~ 2ma
At = @ x— 7 P__
2 ‘\/ 2mw
Since x and p are hermitian operators, the labeling of the second operator with a
dagger is appropriate, The two opetators do not commute. We may compute

LA = N? . v';m] + [" e \@ "]

=h (7-3)
and rewrite the Hamiltonian in terms of the new operators,

H = Lhw + A4 (7-6)

(7-4)

The simplicity of the Hamiltonian is reflected in the simplicity of the
commutation relations of 4 and A with H, We have?

(HA) = [0d'4,4] = ofA".4] 4

= —fiwd (7-7)
and similatly
[HA" = [wAlA, A" = wdl[A,A47]
= FwA" (7-8)

* We shall make repeated use of the rules for commutators exhibited in Appendix B:
[4 + B, €] = [4, €1 + [B, Cland [4B, C] = A[B, C] + |4, (] B

It is, of course, essential that the order of operators not be disturbed.
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Incidentally, it is a useful technical trick in deriving commutation relations
involving hermitian adjoint operators to recall that

[4B]' = (AB — BA)' = B'A" — A'B' = [B' A1) (7-9)
n particular '
[HA] = [4VH] = — [H4]
= {~FhwA)’ (7-10)

: from which (7-8) follows,
Let us now write down the eigenvalue equation, which reads
Hig = Eug (7-11)

In the past, whenever we wrote down such an equation, the implication was
;that H contained some differential operatots like 4/4x and that #x was a function
-of x. That was appropriate when our operators were specifically tied to the space
-defined by all 'square integrable functions of x, but in what we are doing now,
-we are not being very specific about what our opetators operate on. We shall
assurhe that they are defined in some abstract vector space, and rélate that
bstract vector space to the space of funcrions of x later. To translare this
abstraction into the language that we use to describe the equations, we shall not
-speak of eigenfunctions bur of eigenstates, and what we called wave functions
of wave packets, we shall now call #ate vectors, Thus the eigenfunction agp,, (%)
of the maximal commuting set of observables can be teplaced by the eigenvector
of eigenstate of this maximal commuting set, 4,5, ; the labels ab, ..., mgive
the values of the eigenvalues of the observables A, B, ..., M, and this deserip-
. tion, without the x, does explicitly show the maximum information content.
Let us now rake (7-7} and have it act on #g.

HAug — AHug = —fiwdnsg
With the help of (7-11) this becomes
HAug = (E — huw) Aup (7-12)

This equation states that if g is an eigenstate of H with cigenvalue E, then Axg
is also an eigenstate of H but with eigenvalue E — fiw, that is, with energy
" lowered by one unit of

€ = o (7-13)
We mzy therefore write

Aug = clEyug_, {7-14)

The constant ¢(E) is necessary, since even if 4y is normalized to 1, Axg need not



130 Quantum Physics

be. In our emphasis on separation from x-dependence; the normalization condi-
tion that was always written &s

fug(x) ug(x) dx = 1

is now, using the notation defined in (6-18), written as
{wr|wg) = | {7-15)

We shail always normalize all eigenstates to 1, unless they belong to the con-
tinuum, in which case :

&(E — E
or é(p — p) (7-16)

If we now apply (7-7) to the state g, we find, in exactly the same way,
that Aug_., of, equivalently, A%wg gives a state of energy E — 2¢. Thus by
repeated application of the operator A to any #x we can generate states of Jower
and lower energy. A is appropriately called a Jowering aperator. There is a lmit to
how many times it can be applied, since it is a consequence of {(7-1) that H must
always have positive expectation value, For an arbitrary wave function

wioe -]

Wl = [0 pu) b = [puiar oo o
- [imen pwesn

= ﬁ’[ | (x)/dxi% dx > 0 (7-17)
which we rewrite in our coordinate-deemphasizing way as '

Wil = Gl
= (W'p) 20 (7-18)
Similarly, since x is also a hermitian operator
Wiy} = lag)
= {xflxg) >0 (7-19)

and all scalar products of vectors with themselves yield the square of their
length, that is, a positive number. Thus our lowering procedure must end some-
where, and there is a ground state, which we will now denote by uo, beyond which
lowering ends. This must mean that

Aug = 0 ‘ {7-20)

BRI TAS i ..
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The energy of the ground state is
Huy = {wA'A 4+ ) ne = Yo u {7-21)
Let us apply (7-8) to the ground seate: |
HA wy — ATHun = fun A
that 1s,
HAYwy = (Fw + ¥hw) A'uy (7-22)
The energy has been raised by one unit of Aw, and A" is aptly described as a
raising operator. We will change our notation a lirtle, namely, label the state by

the number of enetgy units ¢ = fw it has over the ground state energy &
Thus we write

Alwg = (7-23)
Note that (7-12) implies that

Ay = ug (7-24)
so that A" and A move up and down the same “ladder.”” All the states may be

generated by repeated application of A" to #,. One consequence is that the
energy spectrum s given by

E={n+i)fe =012 ... (7-25)

We have succceded in obtaining the energy spectrum without solving any
differential equation. We have also a general representation of the eigenvectors

1 A* N
Uy = ﬁ (%) g (7-26)

whete we have put in the correct normalization constant.* With the help of this
representation, we can prove the orthogonality of eigenstates corresponding to
different energies. What is involved is an evaluation of an expression of the form

(.’Jn' Am(/f?)” ﬂu}
and this is done by commuting A4's through the A"s ro the righr, where, at the

“Fot the algebraically oriented reader, we describe briefly the way in which this is
derived. With (A1 = e we have [cl® {sal#n) = fa|2 = (AT #o] (A1) #0) =
{wa] A®{ANYnae.

Now we may use (7-3) to derive the relation A"(A™)» = A pli(AT) 1 £ (AT)4]. When
this is pur between {(wo| . . . #g}, the secand term on the r.h.5. vanishes and we g.e: the re-
cursion relatdon fom|* = 2li|ma|

S|t = ml(B)" 0|2 = #l(R)%. We can, without loss of generality, choose ¢, 1eal,
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end, they act on # giving 2 vanishing result. Using (7-5) we see, for example,
that

(AT = A(ATA + B) (AN = KA(AD)?
+ AANATA + B) AT = SHRA(AT + A(AY A

The last term, sandwiched between the ry gives zero because Az = 0, and the
first term can be manipulated in the same way to finally give 67247, Now

<#u!A*#u) = (Atlu‘ﬂn =0 (7-27).

so that we have proved {(us|#;) = 0. This procedure, when followed in the
genetal case, allows us te prove that

{n|m) =0 m=n (7-28)

The statement that an arbitrary state vecror can be expanded in eigenstates
of H now reads in the coordinate independent way

¥ = 2 Cutin (7-29)
n=0
and since (tmitin) = Bpn, we have
Cr == (i) - (7-30)

We digress briefly from the main chrust of this chapter co point out that
the raising and lowering operators may also be used to advantage in solving the
harmonic oscillater equation. In x-space, (7-20) reads

(ﬁx + i ‘\/g;”"‘w) ”D(x) =0 (7‘31)

Using the x-reptesentation of the operator p, p = (fi/#(d/dx) this is

(mwc + & %) He(x) = 0 (7-32)
This is a simple differential equation, whose solution is
wplx) = € e 2 {(7-33)
The constant € is detetmined by the requirement that #y{x) be normalized to
unity:
1= Cz-[ dc ¢ R

~ o=y
i
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that is,

C= ( i )IH (7-34)

Fiar
We may also obtin the excited states by working out in detail

fini2
el (A1) eolx)

L mow \Ut ricy AN e
V! (ﬂ) (‘V 2T Ve dx) ‘ (7-53)

This is, in fact, a very compact way of writing out the general solution of the
differential equation.

We have succeeded in making the point that one can solve for the eigen- :
‘values of the harmonic oscillator using operator methods alone. For this problem
all that is needed to specify the eigenstates is the energy, thar is, the integer
#0,1,2,...appearing in

#(x) =

E=(n+ 1) ko

and thus the complete set of commuting observables consists of H alone.* Thus
the label # on the eigenstate #, describes its whole content. We would therefore
be quite willing to give up the privileged role of the eigenfunction in x-space,
#a{x), except for one point: u,(x) does provide us with more information in that
it gives us the probability density [via |#.(x)|?] of finding the particle at x. Does
this additional content single our the x-space wave function after all? Let us
recall the role of the wave function in momentum space ¢(p) that appears in
Chapter 3 for example. As the Fourier transform of che x-space function it
might have had some claim to a privileged role, but later, in (4-59), for example,
we explained that ¢(p) was "merely” an expansion coefficient of an arbitrary
¥{x) in eigenstates of the momentum operator, and that is why its absolute
square yielded the probability of finding a momenctum p for that state. Similasly,
the fact that [{(x}|? yields the probability density of finding x for the position
of the system could be interpreted by the statement that ¥{x) is the expansion
coefficient of an arbitrary abstract state in eigenstates of the Pposition opetator
%uop. We write the eigenvalue equation abstractly as

Xopthy = Xb, (7-36)

keeping x as a subscripe to stress that it is  label of the eigenstate, just as # is the
label for #,. The spectrum of Xop, & hermitian operator, is continuaus, so that

* The parity is contained in the label 5. States with = eVeN are positive parity states, -
and those with # odd have negative patity. This follows from che fact thar under reflection
Aand A' are odd,
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the expansion theotem, instead of taking a form like (7-29), really reads

¢‘=fdx Clx) ¢ (7-37
Since the cigenstates defined in (7-36) form an orthonormal set,
(¢z|¢'z’> = G(X - x’) (7'38)
we can derive
Cx) = {:]¥) (7-39)

and this quantity is the probability amplitude for finding 2 particle at x—more
specifically, the measurement of the obsetvable x will yield the eigenvalue x with
probability | C(x)| 2 All we have to do is change the nozation, rewriting (7-37) as

¥ = f diof(x) s (7-40)

_ to show chat the wave funcrion in x-space has no privileged role, and we use it
. only as a matter of convenience. The basic principles deal with opetators and
their eigenvectors znd eigenvalues in an abstrace space, and the rest is a matter of
representation. The lawer is, of course, ceucial in obtaining numbers, which is
what physics is all about. That is why we will not lay too much stress on the
formal structure of the theory, and continue using wave functions, Later we will
have to deal with operators that have no classical analog, such as the intrinsic
spin of electrons and other particles, and there we will exerdse our freedom to
use other representations.

We conclude this chapter by discussing the time development of a system
in out representation-independent way. The time-dependent Schrédinger
equation

i i

th A = H{t) (7-41)
dr

is now an operator equation in an abstrace space. Y(#) is a vector, and it points

in a direction that depends on time. The equation can ezsily be solved. The solu-

tion is

¥(5) = ¢ 7 3{0) (7-42)
where {0) is the vector at time 2 = 0 and the aperator e 7% is defined by
g TiHI f‘: -(—_——IH:/ﬁ)n (7-43)
7=0 !

The solution (7-42) allows us to describe the change with time of the expecta-
tion value of some operator A that does not have any explicit rime dependence:

(A= () Al
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= (™M Y(0)] A T gio))
- (‘0(0)| ‘th,f_ﬁ. A efr'H.l/# #’(0))
= (W(0}| AG) ¥(0))

bl

= {40 (7-44)
We used
(e = FHIA L i (7-4%)
along the way, and defined
Al) = SR A TN (7-46)

What (7-44) says is that the expectation value of a time independent operator A
on a state that varies with time as (7-42) may be wtitten as the expectation value
of a time-varying operator A(s) [given by (7-46)] in the time-independent state
¥{0). This is very useful in the formal discussion of guantum mechanics, since it
is convenient to set up a basis of orthonormal eigenvectors in the abstract vector
space once for all, and not wotry about how the basis vectors change with time,
When we do this, we are working in the Hetsenberg pictnre, whereas keeping A
without time dependence means that we are working in the Schridinger piciure.
The result is the same, whatever picture we use: this is analogous to the option
of describing a rotating body relative to a fixed ser of axes, o of describing the
body at rest in a rotating coordinate syscem. The choice is one of convenience.
If we do work in the Heisenberg picture, then state vectors are fixed, and we
need not refer to them. How an observable varies with time is determined by
(7-46), which yields :

d H o o —amm i —iH
— Al = =/ Y A i IR 7 1 FHE
= ® 5 ¢ ¢ % £ AH e

7; HAG) — % AG) H

= L A0 (747)

2 form remarkably like (6-59). That equation was an equation for expectation
values, bur since its fotm was independent of the state in which the expectation
value was taken, it had to reflect operator propetties, and (7-47) shows that
explicitly.

For the harmonic oscillator

H= o0A'A + the
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and since H is a constant of the motion, we have

H = uAY) A + e {7-48)
We can also show, using (7-46), that
[A@), AT = & (7-49)

Hence (7-7) and (7-8) still have the same form, and we get

% AR = —idA(D

7“; AT = fwAND) (7-50)
Thus the time dependence of A(f) and AT(¥) is obmained by solving (7-50), with
the result that
A = ¢ A0)
A = & A0) (7-51)
Using the relation (7-4) it is easy to show that
P} = p(0) cos et — mwx{0) sin wt
0
x{r) = x(0) cos wt + 20 sin wf (7-52)
mw

expressing the operators x(f) and p(2} in rerms of the operators x(0) and p(0).

Problems

1. Use the commutadon telation (7-5) and the defnition of the state #,
given in (7-26) to prove that

Aﬂn = Y nk Hny

(Him. Use induction, that is, show thart if this relation is true for # it is true for
# -+ 1, and establish it ditectly for n = 1.

2, Use the above relation to show that if /{A4!) is any polynomial in Af,
then

df (A1)
4!

AF(AD) wo = F

#o
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Note that representing A in the form

d
A=k —
dA
is consistent with the commutation relation (7-5) and is quite analogous to the
representation
]
i odx
3. Calculate the form of (ua|x|%n), and show that it vanishes unless
# o=t 1
(Hins. Tt is sufficient ro calculate (4| A| . ) since (ta| AT | ) = {Asy| i) =
(4| A|2n)*. Use the results of Problem 1.)

4. Use the results of Problem 2 to show that
(AT o = flAT + AR 2
(Hins. Expand the exponential in a series, and use the fact that

flet iy = T2 oo

p=

dn
FO0) = 5= )
to work out this problem, )
5. Use the resules of Problem 4 to establish the operator relation
LAY M = f(AT + NR)

Note that an operator refation must hold when it acts on an arbitrary state. Ler
an arbitary state be of the farm g{A" ), Thus what must be proved is that

M fAT) €M (AN wy = fA + NE) g(AN) 1,

This can also be proved from the general relation

2
M At M = 4P 4 N4 AN+ ;i' (4,447 + ...

6. Use the above relzetion to prove that
t t _an
FABAT _ ed At —0r)abh

The procedure is the following. Let
HMad+bay _ M4 EQ)

Differentiation with tespect to A yields

(@A - bty PEATID = g pad By 4 e g;i



138 Quantum Physics
that is,

dF
(@A + bAY) £ BOY = aA M (Fa) + &7 o

Use Problem 5 to show that
dF
b AT — Nabft) F(M
& - ) FOY

so that
LT,
F(R) = eMA . () bk

7. Use the procedure of problem 5 to show that
MUAA) e ™M = f(A - MR
Shaw from this that,

eaA-;‘-i;Ar AT gaa b

using the method outlined in Problem 6.

8. Use the above resule to show that
gz = R/ VImBAT ik Emal A, — (k2 i)

Note that x = (1/4/2mew)(A + A7
Use this expression to calculate
(il 4% 20

9, Show that the result obtained above is the same as the one obtained
from

f A 1g{%) &% wglx)

10. Use the general opemator equation of motion {7-47) to solve fot the
time dependence of the operator x(¢) given that

P ( ) + mgx(t} ;

11. Consider the Hamiltonian describing 2 one-dimensional osciilator in
an external electric field.

F (:) + Fmotx2(t) — eBx(#)

Calculate. the equation of motion for the operators p(£) and x{#) using Eq. 7-47
and the commutation relation

[

(O] =
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Show that the equation of motion is just the classical equation of motion. Solve
for p(¢) and x(2) in terms of 2(0) and x{0). Show that

[x(h),x[tz)] # 0 for I FE I
This shows that operators that commute ar the same time need Dot commute at
different times,
12. Use Eq. 7-35 tc calculate the eigenfunctions for » = 1, 2, 3. Note, Be

sure to keep track of the ordering of x and 4/dx in the expansion of the binomial
scries.

References

The material discussed in this chapter is also treated in almosc all of the baoks
in the reference list at the end of the book. The student is enccuraged to look
up some of them, since it is always useful o see the same basic materia] pte-
sented from different points of view.






chapter 8

N-Particle S ystems

Our discussion of a single parricle is casily generalized to an N-particle
system. The N particles are described by a wave function Wlx, %, .., xy) that
1s normalized such that

[...fdx‘ldﬁﬁ.,.dﬁfN!’JI(X[,Xﬂ,...,Xﬁ);z: 1 (8—])

The interpretation of |g(xy, xs, . . . , xn)|? is 2 generalization of the interpreca-
tion of |y{x}|?, that is, it yields the probability density for finding parcicle 7 at
X1, particle 2 at xy, . . ., particle N at xy. The time development of such a wave
funcrion is given by the solution of the differential equation

fﬁg—'}’(xl,.. -2 XN, I) = I{#’(xli""xN; 9 (8_2)

wheze the Hamiltonian is again constructed in correspondence with the classical
form

N B
H= 2-"— 4 Vi, xs, ..., x) (8-3)
1 2m
as
N 1 22 1 o
TH= R f—— - -
(Zml Ox,? + 2my bxﬁ) + P, » %20) &4

The whole formalism of quantum mechanics developed before is easily gen-
eralized, with the proviso that operators describing single particle observables
commute when they refer to different particles, for example, -

i3
[pixil = ; di; _ (8-5)
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If there are no external fields, such as the commeon gravirational field of the
earth, or externally imposed electric or magnetic fields, then the potential energy
can oaly depend on the relative sepagation of the particles, thar is,

V= Vix— a0 — X3, .0, XN~ XN) (8-6)

This must be the case, because in the absence of any external agency that some-
how determines an “origin,” the displacement of the whole system should not
change any physical properties of the system. In other words, the form of the
potential (8-6) is a consequence of the invariance of all physically significant
quantities under the transformartion

X — X+ a {8-7)

A very important specia} case of {8-6} is the case of two-body forces, in which
case

V=2 Vix—x) (8-8)

ixj

The summation is ovet al} indices / and 7, subject to the condition 7 > f to avoid
double counting, and the counting of i = f. Actually, in the description of
electrons in an atom, we will be dealing with the common Coulomb potential,
as well as the electron-electron repulsion, and there the nucleus provides an
origin, The potential in that case is u three-dimensional generalization of

R
; Wix:) + E Vix; — x;) (8-9)

When there are no external forces, then in classical mechanics the total
momenturn is conserved. This follows from the equations of motion

T2 v ) (810)
el A - dxs X1 Xp, X1 N1, .. o0 XN XN -
a consequence of which is that
d ax; o
W Ty T R YT ma ) ()
=0

The reason for the vanishing of the right side of the above equation is that for
every argument in V, there are equal and opposite contributions that come from
3" /3x; acting on it. Thus

7

ax;
= i— 8-12
P= % s12

is a constant of the motion.
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In quantum mechanics the same conclusion holds. We shall demonstrate
it by using the invariance of the Hamiltonian under the transformation (8-7).
'The invariance implies thar both

Hug(xy, x2, . .., xw) = Fuglxy, xs, . . ., xN) (8-13)

and
Huglxi+ a,x2+ a,. .., xy + &) = Bup(xi+ @, 50+ a,. .., xn + &) (814)

hold. Let us rake « infinitesimal, so that terms of 0(«%) can be neglected. Then
axi 4 a2, ..., xn + g)"_vu(xl,...,x&r)—t-aa wxs, .., xn)
1

o]
‘a—ula, .. ,0n) ...
Dx,

o
~ple, ., xn)ta ), T u(xy, ..., xE)

i bx.-
and hence, subtracting (8-13) from (8-14)

N 2 N 2
aH(): a) me(xy, ..., xy) = 4E ( E a) wulxs, . .., X%)

i=1 =1 ¥

EyE(xli LI XN)

a

™

Mz 1 Mz

a Hug(xy, . . ., xn) (8-15)

1

( 20
i 1395;
( 2

X
S

2

[
-

'If we now define «

P=E.ZN:_E)EZN:P£ (8-16)

E - axz' =1
we see that we have demonsuaated thar
(HP —_ PH) ﬂg(X1, e ,XN) =0 (8—17)

Since the energy eigenstates for N-particles presumably form a complete set of
states, in the sense that any function of xy, xs, . . ., x5 can be expanded in terms

of all the up(x, . . ., xx) the above equation can be translated into
) . [HP xy, ... ,xx} =D (8-18)
foralt(x,, . . ., xx), that is, into the opetator relation
(HP} =0 (8-19)

) |
This, however, implies that P, the totzl momentum of the system, is a constanr of

the moiion. This is a very deep consequence of what is tezally a seatement about
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die nature of space. The statement that thete is no otigin, that is, that the laws
of physics are invariant under displacement by a fixed distance, leads to a con-
servation law. In particle physics there are no posentials of the form that we
consider here; nevettheless the invariance principle, as stared above, still leads to
a conserved total momentum.

Our main interest will be in the fwo-pariicle system, which we discuss next.
Fot two noninzeracting particles we have the simple Hamilvonian

por

2m1 2#’.’2

H= {(8-20)
We might expect that since the two particles are totally uncorrelated, the proba-
bility of finding one at x; and the other at x; is the ptoduct of two independent
probabilities

P(xs, x2) = P{x1) Plxa} (8-21)
Thus we expect that the solution of

o Kt Dt
(— Iy D gbx_;f) #{x1, x5) = Eu(xy, xq) (8-22)
1 1

should be separable into
u{xy, x9) = $i(oxr) @alxs) (8-23)
Substizuting this into (8-22) and dividing by ulxy, X2) we get
— @2 2m) (i) /dxi®) | — (P 2m) (Pipao02) /)
#:(x1) Ba(xs)

The two terms in the equation depend on different variables, and chat is why we
set both of them equal to the constants E; and Fs respectively:

=E (824)

= E1+ Ex
ﬁ.z d2¢l1(3€1)
o At Eg(x1)
B dgalx)
i = B (8-25)

The twa equations are easily solved, and we get

alx,xs) = C Phatibin (8-26)
with

2 2mbs

21?21E1
= P kot = P (8-27)

k1?
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Let us now rewtite the solution using the coordinates

X = X1 — xp
mix1 1 mrax.

x = 21T Py (8-28)
m1+ ms

that is, the separation between the particles, and the center of mass coordinate,
If we write

iy + myxs

kixy -+ kyxy = alx — x:’) +8

m~+ m
we find that
E=bh+ k=K
a=m2'él—.mlhz,§
m + my

50 that the sclution has the form

“(xl’_ﬁ) = ( piKX giks (8-29)
where K = by + £; is the wave number corresponding to the total momentum,
and £ is the wave number corresponding to the relative momentum, The first
factor represents the motion of the center of mass, and the second factor js the
“internal” wave function, The energy may be written as

7K® A%t ( 1 1 )

E=s —m  —
2(m1 + m;) 2
The firse facror is the energy of the two-particle system, with mass m; + m,
moving freely with the total momentum; the second term is the internal energy.
If we introduce the reduced mass u, defined by
1 1 1

- =t — (8-31)
» wh 7y

—+— (8-30)
/3] g

then the term is %2£2/2p which is effectively a one-parricle cnetgy, namely, that
of a free particle with mass x and momencum fik,

When the Hamiltonian in (8-20) is sltered by the addition of a potential
that depends on %1 — x; only, then we have

o Rt ar
(— o k) ulx,x2) 4+ Vi — x5) w(x,xg) = Eu(xi,x;) (8-32)

2?}21 axlz 2’.’32 bJng
Using the coordinares
X =X —

mxy -+ max,
X=m PRk b, b (s33)
my + m, 7] ny
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5o that
X = X—r _“' X
iy
[ .
xg= X — —x (8-34)
L]

" a litcle algebra shows that the equation takes the form

fi# o #t Q? .
(— imm_g) 3% Ej; o + V(x)) w(x,X) = Ba(x,X) (8-35)

If we write
wlx, X} = KX g(x) (8-36)
we find that the equation for ¢(x} s
# oo _
2 de + Vix) $(x) = «(x) (8-37)

that is, 2 one-particle Schrdinger equation with reduced mass, and energy
REK?
2(my + mo)

In Chaprer 9 we will obtin the separation in a somewhat more sophisticated
way. We now tutn to the problem of identical particles.

" There is compelling evidence that clectrons are indistinguishable. If chis
wete pot so, then the spectrum of an etom, say, helium, would vary from experi-
ment to experiment, depending on “'what kind” of clectrons were contained in
it. No such variation has ever been observed. Similarly, nuclear spectra ate always
the same, indicating that protons are indistinguishable, as are neutrons. Similar
evidence from high energy physics expetiments indicates very strongly that
other particles, for example, pi-mesons, are also indistingnishable. This is a
purely guantum-mechanical property: in classical mechanics it is possible to
follow the orbits of all particles (in principle) so that they are never really
indistinguishable,

We shall leamn that electrons ate characterized by an internal quantum
number, called the spin, and thus their states must include in their description
the spin label. This has a futther effect on the consequences of indistinguisha-
bility, which we discass next. )

A Hamilropian for indistinguishable parcicles must be completely sym-
metric in the coordinates of the particles. Fora two-particle system, if thete is do
dependence on the spin iabels, the Hamiltonian is

"e=E (8-38)

2 2
TR L (8-39)
2 2

B e
TR
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with .
V{xi%3) = Vixgx) (8-40)
We wtite this symmetry symbolically as
H(1L2) = H{2,1) {8-41)

and it is undetstood that if the Hamiltonian does depend on the spins of the
particles, then the spins are to be indluded in the labeling "1, "'2."" A wave func-
tion for an N-particle system, with all the parricles identical, will be denoted by
¥(1,2,.. ., N}, and this stands for the more explicit $(x1, 1; X, 02, . . . ; X, o)
where the ;5 describe the spin states,

For a two-parricle system the energy cigenvalue equation reads
' H(1,2) %p(1,2) = Eug(1,2) (8-42)
Since the labeling does not matter, we may write this as
H(2,1) up(2,1) = Eug(2,1) (8-43)
On the other hand, using (8-41) we 8.]5(;) have
H{1,2) #g{2,1) = Euz(2,1) (8-44)

If we now follow the formal approach that we used in our discussion of parity,
we will introduce an exchange aperator Ppy, which, acting on a state, interchanges
all coordinates (space and spin) of particles 1 and 2. The definition of Py, implies
that

Puf(1,2) = ¢(2,1) (8-45)
Eq. 8-44 may be written as follows
HP12 4p(1,2) = Ewg(2,1)
= EPy; 45(1,2)
Pi3 Bug(1,2) . .
Py Hug(1,2) (8-46)

i

and this, as usual, implies the operator relation

\ [HPsl =0 (8-47)
Thus Pys;like patity, is a constant of the motion. Also, like parity

(Pi2)? ¥(1,2) = ¥(1,2) (8-48)

30 that the eigenvalues of Py are 41, The eigenstates are che symmetric and
antisymmetric combinations

$(1,2) = % [¥A1.2) + (2,1}
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¥(1,2) = *15 [w(1,2) — $(2,1)] (8-49)

The fact that Pis is 2 constant of the motion implies that a state thar is sym-
metric at an initial time will 2lways be symmetric, and an antisymmetric state
will always be antisymmetric.

It is an imporeant law of maiwre that the symmetry or antisymmetry under
the interchange of two particles is 2 chatacteristic of the particles, and not
something that can be arranged in the preparation of the initial state. The law,
which was discovered. by Pauli, states that

1. Systeins consisting of identical parricles of half-odd-integral spin
{i.e., spin 1/2, 3/2, . . .) are described by antisymmettic wave functions. Such
particles are called fermions, and ate said to obey Fermi-Dirac statistics.

2. Systems consisting of identical particles of integral spin (spin0.1,2,...)
ate desctibed by symmerric wave functions. Such particles are called bosons,
and are said to obey Bose-Finstein statistics.

‘The Jaw extends to N-particle states. For a syscem of N identical fermions,
the wave function is antisymmettic undet the interchange of any pair of par-
ticles. For example, a three-particle wave function, ptoperly antisymmetrized,
has the form

PO123) = T H1.23) — $213) + G
' —y3.2D) + p3.12) — (1,32)] (8-50)

whereas the three identical boion wave function has the form

$(1,2,3) = ;,1—3 [(1,2,3) + ${(2,1,3) -i- ${2,3,1)
4 ¢(3,2,1) 4+ ¢(3,1,2) + ¢¥(1,3,2)] (8-51)

Let us now consider 2 very interesting special case, in which N fermions
do not interact with each other, but do interact with a common potential. In
that case

N
H= 2 H (8-52)

i=1

where

p?
, H = 2= 4 v (853)
2m

The eigenstates of the one-particle potential are denoted by xg,(x)} where

Hong,(xi) = Eaup, (o) - {8-54)
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A solution of

Hug(1,2,. .., N) = Exg(1,2,...,N) (8-55)
is
up(1,2, .. .. N) = ag,(x) sg(x) . .. wg,(xn) (8-56)
where
Ext+ E+.. +Ev=E (8-57)

In (8-56) we suppressed the o; labels that go with the x;. Our task now is to
antisymmetrize (8-56). If there are only two patticles, we evidently have

1,2 = \% (i, (40) i, (x2) — am, () )] (8:38)

With three particles, the form is
1
#4(1,2,3) = V6 [ug,(x1) ap(x0) g (%) — wm () 0w, (x1) aam,(y)

+ ug,(x2) wp () up,(x1) — wp,(xg) ug,(2:) up,(ory)

+ uEx(XS) IJE,(X]) “EI(XZ) - 231("(1) ”E:(xs) ”E:(xﬂ)] (8'59)
For N particles, the answer is a determinant, the so-called Slaser determinant:!
: 1
Ht‘”(l,z, ey N) = Vﬁ "El(x’-) ”El(xﬂ) - ﬂE:(xN)
ug, (1) #glxa) . .. g, (%)
”Ey(xl} "'En'(xz) s “E.'J('XN) (8-60)

Clearly the interchange of two particles involves the interchan ge of ewo columns
" in the determinant, and this changes the sign. If two electrons are in the same
energy eigenstate, for example, B, = F; and if they ate in the same spin state,
that is, the spin labels are the'same o, = a3, then the determinant vanishes when
X1 = xathat is, the elecirons cannot be at the same place_ Thus the requirement
" of antisymmetry introduces an effective jnteraction between two. fermions:
qualitatively we see that two particlessin the same state tend to stay away from
each other, since the joint wave function vanishes when their separation goes
to zero, Thus even noninteracting parricles behave as if there were a repulsive

‘ ! The wave function for N identica) bosons is toaally symmetric, and the general
form is obtained by expanding the determinant in (B-60) and making all the signs positive.
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interaction between them. We will see that a complece set of commuting
observables for electzons includes an addirional two-valued observable associated
with the spin. Thus a state of given energy, angular momentum, parity, and so
on, can be occupied by two electrons (of opposite spin variable), but by no
mote than two electrons. This is a restricted version of the Pawli exclusion principle.

The statement "no rwo electrons can be in the same quantum state”
strikes one by its global nature. Suppose we have 2 hydrogen atom in the
ground state on earth and another hydrogen atom in its ground state on the
moon. Does this mean that the rwo electrons must be in opposite spin states?
To answer this, we note that g specification of the state of the two elettrons
requites not just a statement that the electrons have spin “up” or spin “down”
and that they are in the ground states oOf their respective atoms, but it also
requites a specification of the energy of the atams.How well do we know these?
Suppose we consider a box of width L, and suppose the aroms are localized in
0 < x < L/4and 3L/4 < x € L respectively. Then the momentum of the
atoms can be determined with an accuracy that is restricted by the uncertainty
principle. The possible values of che energy are given by

A%

~ = ML {8-61)
from which we deduce that possible values of the momentum are
p=
L

Measurements of the momenta of atoms are restticted by the uncermainty
refation

Ap ~ fﬁ —~ fﬁ_ (8-62)
Ax L
and hence their energies can only be determined with an accuracy
iy Rwme?
AE~~ &~ oy (8-63)
This, however, is lagger than
Bo— Fa T2 (s-64)
ML2

In fact, for atoms separated by 1 meter, say, moving with velocity 10° cm/sec
n ~ 10", so that there is no possibility ¢hat in 2 mactoscopic situation there
will be conflict with classical intuition. In effect, if the two atoms ate labeled A
and B, the question is whether there is 2 diffetence between using the wave
function ya(o) ¥aix2) and ‘

faloo) wala) — Palxs) ¥elrl
7 .
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to describe the two electron state. We shall see in our discussion of molecules
that the overlap between wave functions falls off exponentially with the distance
between the two atoms. When the atoms are far apart, it does not make any dif-
fetence which wave function we use. When the atoms are close, 2s in a Hy
molecule, for example, the valae of # is of order 1, the wave functions do overlap
and it does make a difference whether one uses the uncotrelated wave funcrions
ot the antisymmetrized wave functions. Experimenr tells us that it is the latcer
that should be used.

An interesting consequence of the Pauli exclusion principle is that che
ground state for N electrons in a potential is very different from the ground
state for N bosons or N distinguishable particles. Considet, for example, the
infinite potentiai box,

Vix) = w x <0
=0 0<x<Tp
= @ b-(_x {8-65)

The solution of the Schriddinger equation thar vanishes at x = 0 and x — bis
given by

talx) = sin nmxfb (8-66)
withz= 1,23 ... andthe enetgy eigenvalues are
hlx2n?
n = - 8-6
2mb* (8-67)

For N noninteracting bossns, the ground state has all the particles in the gy = 1
state, and thus the energy is given by

fitg?
E=N-—o 8-68
: 2mi? 68
so that the energy per particle is
E APr®
= (8-6
N 2mb? 4-69)
For N noninteracting fermions the situation is quite different. Only two elec-
trons can go into each of the states » = 1, 2, 3, ..., so that N/2 states are
filled. Thus the total enesdy is given by
o pLAy S fir? N3

E=2 .,‘E bt s 24 (&70)

In obtaining the last result we have assumed that N is latge, so that it does not
matter whether the last level is filled with one ot two electrons, and we have used

N/2 Nj2 1 3
Zn*z[ nﬂdrz"_vﬁ(—li)
— 1 3 :

2
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Thus the energy per particle

E ity

N 24mb?

Nt (8-71)

grows with N°, Equivalently, for a given energy, the number of bosons filling
the well is proportional to E, while the number of fermions filling the well is
ptoportional to EY* The highest level to be filled in the fermion case is the one
fot which # = N/2, and its energy is

RixiN?

“amb (8-72)

Ep =
The subscript F has been put in because this energy is called the Fermi energy.
We may weite it in tetms of the density of fermions, which in the one-dimensional
problem is N/b = p, as

Ep = — gt (8-73)

We shall return to the significance of these remarks in Chapter 9,

"The exclusion principle plays an extremely important role in the structure
of atoms, The enotmous tichness in the vatiety of chernical properties of the
varipus elements is directly traceable to the fact that only a limited number of
electrons can occupy a given energy eigenstate.

Problems

1. What is the reduced mass of an electron-proton system? How does it
differ from the reduced mass of an electron-deuteron system? What is the
teduced mass of a system of two identical particles?

2. Prove that the exchange operator Pyp is hermitian.

3. Consider two noninteracting electrons in an infinite potential well.
What is the ground state wave function if the two electrops are in the jame spin
state?

4, Consider two electtons in the same spin state, interacting with a
potentidl

V(x—xmly= -V, |1 — x| € a
= 0 elsewhere

What is the lowest enetgy of the two-electron state, assuming that the total
momentum of the two electrons is zero?
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[Hént. Separate the equation in a manner leading to (8-37) and then apply the
Pauli ptinciple.) .

5. Consider two identical particles, each of spin 0 interacting with po-
tential energy

Vlxyxs) = K[(x — %) — (e + xg)]?

where x; and —x, are the equilibrium positions of the particles.
What is the spectrum of the two-patticle system? What is the spectrum of
the system when the identica) particles have spin 1,/2?

6. Consider two identical particles described by the energy opefator
H = H(p1,x1) + H(psxs)

where

2
H(P:x) = ;?2 + %mzxz

Separate out the center of mass motion, and obrain the energy spectrum for this
system. Show thar it agrees with that obtained by solviag

H(x,%0) = Bloer,x)
with
Yxnxs) = us(xy) wa(xs)

Discuss the degeneracy of the energy spectrum.

References

See any of the references listed at the end of Chapeer 6 and also

D. S. Saxon, Elementary Quantum Mechanic, Holden-Day, Inc., 1968,
D. Patk, Introduction to the Quantum Thesry, McGraw-Hill Co., 1964.






chapter 9

The Schrodinger Equation in

Three Dimensions

The Hamiltonian for a single particle moving in three-dimensional space
teads

1

Fl 3 1 !
= Lti:‘n_m + V(x,y,z) (9-1)

H

which we write in the form
P2
H=>=—4 V() (9-2)
2m

The three-dimensional momentum p has the tepresentation

3
p= TV {9-3)

For twa particles in three dimensions, the general form of the Hamilronian is

2 2
H=Bo 0 Py (9-4)
2?”2 L

2m
If the porentizl depends on the separation berween the particles alone, that is, if
Ve = V(- 1) {95)
then the Hamiltonian is invariant under the displacement of the whele system,
ri—r 4 a,r— 1+ a and, as we saw in Chapter 8, this implies the con-
servation of the total momentum and a separation of varizbles, In what follows
we will achieve the separation by finding functions that are simulrancous eigen-

functions of the commuting operators H and P = p; + p,. The momentum
eigenvalue equation reads

Popf(rxs) = P fr,rs5) " (9-6)
. o 155
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that s,
1
7 V1-+ ¥y flrrs) = P f{x, 1) {9-7)

If we write
fir,e) = §r — ra, ar + 31'2] )
then with R = ar, + Brs, (9-7) reads il Tﬁc{“ e

fi ) <
~ (e 8) Vep(rR) = PUrR) o9

that is, the variable T = r; — ¥y is 2 constant parameter as far as this equation is
concemed. Thus the solution of this equation is

7] ™
WrR) = alr) SR (9-10) '
We will now.choose o and ﬂ o sunphfy the energy elgenvalue equanon Wthh g

reads e e .

—

h? |
[— — v — %v,ﬂ + V(e — Em] u(e) FERAEED — o (9.11) -;

21 :
Since
Vl =V, + oV
v:;= —V.+ Vs (9-12)
this equation takes the form
R o?P?
— v} Pv, ———
A~ A o
it _up gp?
- v} t L a Rl
”~ ![ #(r) — B P-v. ulr) — L PR u(r):l
+ V{|r|) #{x} = Ew n(x) (9-13)
aftet the exponential factor has been divided out, following the differentiation

with respect to R. This equation stmplifies if the cross terms are eliminated with
the choice

a = M
B = ym: (9-14)

It then reads

~ 2 V.2 u(r) (|x]) =(r) = ot — 20r + 22) #(x) (9-15)

-
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where we have introduced the reduced mass 4 by
+ — (9-16)

This is really a one-patticle Schrédinger equation with energy
™

E = Eyp — —
U 2(m + my)

(017

Thus the encrgy that enters into the effective one-particle equation is the total
energy, less the kinetic energy of the two-particle system, whose center of mass
moves with momentum P and whose total mass is m + ma.

The quantity ¥ is not specified by the abave equation. If, however, we
require thac the variable R be canonically conjugate to the total momentum P,
that is, if we require that

A
[Ps,R,] = n (9-18)
and 5o on, then we see that
' i ﬁ
(12 + pooy axs + Bxs] = N (e +8) = n (9-19)
© implies that
c+ B8=1 (9-20)
that 15,
1
= — -21
¥ 1+ ms (9 )

The reason for carrying out what is after all a very simple separation of variables
in this seemingly complicated way is that this procedure will serve as an example
of how to proceed in the further separations of the one-particle Schridinger
equation. Such a separation is possible when the potentizl depends on the
separation between the particles, |r| alone. With |r| = r, the Hamilronian

=2 + ¥in (9-22)
2y

is invariant under rotations; V'(r) is certainly a function of the distance from the
otigin alone and does not depend on the angular vagiables that locate the direc-
tion of the vector r; p? is also a scalar quantity, the length of the vector p, and
thus independent of the otientation of p. Equivalently p* = —#*9? is invariant
under rotations. The sceptical reader can check this explicitly by considering the
special case of 2 totation through 2n angle § about the z-axis: with
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»
I

x cos @ — ysind

' = xsind+ ycosé (9-23)

-
I

it 1s easy to see that
/= (xlﬂ 4 yiz + z!z)lfﬂ — (xz + Jﬁ + 22)11‘2 = r

and

D\ a\e 2 ) B \2 . i) o\
(&) +(b_y’) = (cosﬁa—smﬂa) +(smﬂg;+cosﬂsj") p
a\? 0\

-()+(3) .

| Since the Hamiltonian has an invariance property, we expect a conservation
| law, as we saw in the case of parity and invariance under displacements. To

identify the operators that commute with H, let us consider an infinitesimal
rotation about the z-axis. Keeping terms of order § only so that

x=x— 0
¥y =3+ 6x (9-24)
we requite that
Hug(x — @y, y + 0x, 2) = Bagl(x — 8y, y + x, 2) (9-25)

If we expand this to first order in 8 and subtract from it

Hug(x,y,2) = Eug(x,y,2) (9-26)
we obtain
> by 0 a
H (x E -y E) JIE(xJ;Z} =E (x 73-)’— -7 S;) ”E(x-y’z) (9-27)

Since the right side of this may be written as

(x 2 i) Hulr3,2)
dy ? Ax KB
and since the #g(r) form a complete set, we find chat with
L_ﬁ(i_ l)_ J—— | (928)
e = Xay be = xpy — ¥
the commutation relation

[HL] =6 ' (9-29)
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bolds. L, is the z-compenent of the operator
L=rXxp (9-30)

which is the angular momenrum. Had we taken rotations abour the x- and y-axes,
we would have found, in addition, that

[H= Lz} =0

(H L] =0 (9-31)
Thus the three components of the angular momentum operators commute with
the Hamiltonian, that is, the angular momentum is 2 constant of the motion,
‘This parallels the classical result chat central forces imply conservation of the
angular momentum. :

We might be rempted ro lock for simultaneous eigenfunctions of H, L.,
L, and L., but these do not form a complete set of commuting variables. For
example
L., L] = [JPL' — Iy, Zpa — xpa)
= [)’Pz: ZP,] - [sz ZP:-J - [}Pm xpz} + [szh xPz]

¥ [P,,,z] P+ xlzp.] by

i
W; (JP: - va)

= #iL, (9-32)
Similarly
[L, L] =L,
[L., L;] = ihL, (9-33)

Thus only one componeat of L may be chosen with H to form the commuting
set of obscrvables. We can do a litile better, however, since (9-32) and (9-33)
imply that L* commutes with all three components of L:

(e L2 = [L,, L2 + L, + LA = [L,, LA + [L., L]

= Lle, Lo] + {Le, L) Lo+ LyJL.. L]+ [L,, L} L,
#RLoLy + ifL,L, — HL,L, — iRL,L,
=0 (5-34)

and 50 on. We thus choose as our complete set of commuting observables the
operators H, L, {a purely conventional choice) and LY. We could also have
included pariry, since the Hamiltonian is manifestly invariant under x — —x,
y— —yand z — —2, but, as we shall see later, specification of L2 determines
the parity.
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In Chapter 10 we will determine the eigenvalues and eigenfunctions of L
and L?; here we mercly note that their use greatly simplifies the solution of the
Schrodinger equation. This follows from a relation derived below.

L? = (¢ X p)t = (¢ X p)al* + [ X p)uJ? + {(r X phl®

(22 +3)
AR R
2 d ) 2
—H2 —_ —_— - = e
R (z o bz)(z Ox bz)
Y S _a_)(xi_ _EL)
o Yo J\"y e

aﬁ ag aﬂ aﬁ

— 2l e = of & 4 =

ﬁ[" az+azz)+’(azf+ax2)

)~
SR R .
P Ty (9-33)
as a little algebra shows. Similarly
i) e} d 2 e} a
o) = —R2 - — - = I il
r-p) ﬁ(xbx+)bj+zbz)(xax+yby+zbz)
. o , & , 0 o o
= —F? 2 —— —_— _— 2 —
(x ax? +y ! te oz? + 2y Ax0y T ydz
ot 0 0 2
Zix — x4yt z 36
* zxasz+xax+yby+zbz) (5-36)

The sum of the two yiclds

ot o* a2 ' 0 ) 0
—h3{ 2 2 ] [ I 2 —_— —— _—
R3x® + y -&-:a)(ax2 + o + az=)+ﬁ (x ™ + ¥ o + =z bz)
We therefore get the identity
L? + (r-p)t = rp® + fr-p {9-38)

Since we are dealing with operators, keeping track of the order of the terms is
crucial, It follows from the idencity that
[L’ + (x-p) — iﬁr-p]

1
Py
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-

=3
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X

Fig. 9-1. The definition of the spherical coordinates used in the text and the
relation between the cartesian coordinates {x7,7) and the sphetical coordinates
(r.0,8).

2 \2 1
= .L Lt — ﬁal_ (r _) - EE 2 (9-39)

Thus the Schrijdinger equation takes the form

Bl a o 1 d 1
2l (o) (a)+i2 - il e

+ V(r) ue(x) = Bupl(r) (9-40)

If we work in spherical coordinates (Fig. b-1), which is the narural tlﬁ.ng to do,
then the only operator that involves the spherical angles ¢ and ¢ is L2, If we
therefore pick eigenfunctions of the form

ug(r) = Y\(0,8) Rea(r) {9-41)
" where ’
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' £27\(0,4) = AY>(0,¢) (9-42)

is the eigenvalue equation for L2, then the equation separates into {9-42) and a
purely radial equation. Our procedute is really no different than the conven-
tional separation of variables. Tt does, however, stress the role of the symmetry
in determining the complete commuting set of operators, and with this help the
separation can be effecced.

We have concentrated on the reduction of the three-dimensional energy
eigenvalue equation in spherical coordinates, since central potentials, for which
V = V(r), ate by fat the most interesting ones. One other situation that is of
interest to us is the case when the potential is of the form

Vixgy.z) = Piix) -+ Va(3) + Valz)

The equation

o o o? o?
—-— (6;; + oy + a{) wp(xp,2) + Vilx) + Vi) + Vil(2)) unlxp2)

2m
= Euglxyz) (9-43)
is easity seen to be solved by
#u(x,9,2) = #(x} 203} wa(2) (9-44)
where the functions on the right are solutions of

B 4

om dxl + Vl(x)] #,(x) = e, (%)

owoa
~om Vz(}’)il ra(y) = etu(y)

[ B & , ;

|~ o e TP wa(z) = ee(z) (9-43)

and
E=¢+ e+ €
A particularly interesting example is the three-dimensional generalization

of the potential hole with infinite walls. If the three-dimensional box is cubical
in shape, with side L, then

Vix) = x <0
=0 0<x<L
= w L<x (9‘46)

and 50 on. Thus, aside from a aormalizing factor, the general solution is




The Schrodinger Equation in Three Dimensions 163

#g(x,9,2) = sin m%w sin % stn uxTﬂ {9-47)
and
hx?
= oo mi et o) (9-48)

Note thac there is quite a lot of degeneracy in the problem: there are as many
solutions for a given E as there are sets of integets |my,mam,} that satisfy (9-48).
"The degeneracy is usually associated with the existence of mutually commuring
operators, and this example is no exception. Here these operators are H,, H,,
and H,, defined by

2’
H, = — + V1(.>:)
2m
12
Hy = I + Vly) (9-49)
2
=24 v
2m
50 that - R
. H.‘: + Hv + Hz =H (9'50)

It is interesdng to ask for the ground state energy of N noninteracting
identical fermions, for example, electrons, in the box of volume L3, For each
triplet of integers, (1,1,1), (2,1,1}, (1,2,1), . . ., two electrons cin be accom-
modared. It is easier to ask the question in a different way: How many triplets of
integers {mi,us,m;} are there such that E given by (9-48) is less than the Fermi
energy Ep? Each triplet forms a lattice point in a chree-dimensional space, and if
there ate very many of them, then it is 2 very good approximation to say that
they must lie inside a sphere of radius R given according to (9-48) by

*

P

- 2mEp
mPt a4 onl=R=—"

Atx?

and their number is given by the velume of the octant of the sphere for which
all the #; are positive. Thus the number of lattice points is

1 d4r 1 4% {2mEp 32
i R — paee (ﬁﬂﬂ-ﬂ L2) {9-52)

iz (9-51)

and hence the number of electrons with energy less than the Fermi energy Er is

twice that, that is, )
* 2mEp\¥2
N = 3 L? ( 521.-2) (9-_53)




164 Quantum Physics

The number of electrens is proportional to the volume of the box L3, which is
to be expected. In terms of the density of electrons,

N
B o= ‘E; (9-54)
we have
ﬁﬂ 2 In 2/3
Er=— (_) (955)
2m \ «
To calculate the total energy, the number of lattice points may be written as
1
- A'n (9-56)
8J jnigr

The factor 1/8 comes from our testriction to positive integers in (9-48); in the
above integtation this restriction is removed and must be compensated for by
the factor in front. At each latrice point the energy is given by

fitn?

- 2
T 2mlt "

(9-57)

so that the total energy is

et 1
2ml? 8 (n|<R
fitze? 1 fﬂ
= - nt dn
2ml? 8 o

h?
s
20mL*

(9-58)
Since R is related to the number of electrons by

4

1 .
LS — R 9-59
8 3 6-59)

2 {3N 53
ot = —— { — -60
Euor 20mL? ( T ) (-60)

N=2

we finally get

If we write this in terms of » = N/L? we get

P X 53)513
=— (=) L3 9-61
Eror 20m (TI‘ ( )

The fact thar the ground state of a many-electron system in a potential
consists of a large number of filled Jevels has many ramifications. Typical values
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of Er ate of the otder of 5-10 ¢V. Thus, at otdinaty temperatures very few elec-
trons can be thermally excited; most of them could only be excited to states that
ate already occupied. The implication of this is that for 2 metal, which is quite
well described as a crystal lattice of ions with one of ewo free electrons per atom,
only the ions contribute to the specific heat. If 20 elecuic field is applied to the
metal, only the electrons near the top of the “Fermi sea” can be accelerared,
since those that lie deeper cannot find available energy states. Those that are
accelerated have long mean free paths. Collisons with fons that would reduce
their energies below Ep are inhibited because there are no available empty states.
These matters are discussed more fully in books on solid state physics.

Problems

1. Consider a particle moving in a cylindrically symmetric potential
V(p), whete p* = x? + 9. What is che complete set of commuting observables
that you would use to specify the state of the system?

2. Use your conclusions from Problem 1 to separate the Schrodinger
equation in cylindrical coordinates.

3. Given that the numbet density of free clectrons in copper is 8.5 X 10%
cm—%, calculate (1) the Fermi energy in electton volts; {2) the velocity of an
electron moving with kinetic energy equal to the Fermi enetgy.

4. A nudeus consists of N neuttons and Z protons, with N - Z = A,
If the radius of the nucleus is given by R = roAY3, with ry = 1.1 fm (1 fm =
107% cm}, and if the neutron and proton masses are both very nearly 1.6 X 102
gm, write expressions for the Fermi energy of the proton “gas” and the neutron
“gas,” assuming that the protons and the neutrons move freely. What are the
Fetmi energies if N = 126andl Z = 827

5. Consider a neutron gas in its ground state, with mass density p vatying
from 10" 10 10'® gm e, Calculate the Fermi energy as a function of p. Note
that at some point the neutron gas becomes relativistic, that is, the relarion
between energy and momentum is relativistic. fn what range of densities should
one begin to use the relativistic formula?

6. The mean election energy in 2 degenerate electron gas is given by

Lfm

8 2m,

.—1]-:1’11
8

E) =
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for nonrelativistic electrons, and

3 f Iol(p + m A 7 )

m}fd“n
8

mote generally. Cakculate the general expression for the mean energy as a func-
tion of § = pp/m.. Use this to calculate che pressure, defined by the thermo-
dynamic formula

(E) =

L uE)
)

in the nontelativistic formula and in the ultrarelativistic domain, where £ 3> 1.
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For a good discussion of angular momentum in the context used here, see
J. L. Powelland B, Crasemenn, Quantum Mechanics, Addison-Wesley, Inc., 1961.

This hook, as well as every introductory book, works out the separation of the
three-dimensional Schrédinger equation.




chapter 10

Angular Momentum

Our task in this chapter is to find the eigenvalues and the cigenfunctions
of the operators L, and L2, Since the angular momentum has the dimensions of
%, we may write the eigenvalue equations in the form

LzYlm = mﬁth
LY, = 1(1 + 1) Yy, (10-1)

where iz and /({ + 1) ate real numbers. The peculiar way of writing che eigen-
value of L? will prove its convenience fater. There ase several ways of proceeding.
The conventional way is to write out the operatos L in spherical coordinates.
We have

x = rsin B cos ¢
¥ = rsin @ sin ¢
z = rcosh (10-2)
50 that
dx'——— Sit' 8 cos ¢ dr o rcos 8 cos ¢ — 7 sin O sin ¢ 2
dy = sin Osin ¢ dr + rcos 8 sin¢ A + rsin 8 cos ¢ e
a2 = cos 0 dr — » sin 6 df (10-3)
These can be solved to give -
dr = sin0c05¢dx+5in05in¢a5+ cos f dz

1
= -:(cosﬂcos¢dx+cosﬂsin¢dy—sinﬂdz)

db = = (— sing dx + cos ¢ i) (10-4)

Y
rsin @

167
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With the help of this equation we can obtain

e} ara+aaa o O
dx dx Or Ax of ox O¢

oo g2 b osocosg S - S22
= sin 0 cos ¢ ; cos 8 cos ¢ 20 rsin® ¢ .
2 nosng St Laosme T4 B2 “
2 = sin § sin ¢ cos #sin ¢ Y ssin 0 D¢
o] D sind D
- -~ . 10-
Oz cos 8 or r O ‘ (10-3)

and chus we finally obrain

ﬁ b o E 0

The other two components of the angular momentum are more compactly
expressed, if we introduce

Ly=L,=x i, (10-7)
Then
L _i[i E’i-(_ i)}
= YR dy ax o
AT I R
= iz o !by = i{x .rya
0 1 0 iet% 0
p— i — — i ————
:I:ﬁrcosﬂ(smﬂe E)r+ rcosSe > rsinﬂaqb)
o sind 2
in 8 e — _ — -
= firsin ¢ (cosﬂ or " bﬂ) (10-8)
that is,
o) ]
Ly = fi g% (:i: 6; + iCOtB&) (10-9}
One can then construct the L? opetator by observing that
Ll = (L:+ LML, — iLv)
= L+ L' — L. L] {(10-10}

s0 that

L= L+ LL_+ Ly, L)
=Ll _+ L?—#hL, (10-11)
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In the last line we used (9-32). We thus get a second order differential operator
involving @ and ¢, and theie remains the rask of solving the differential equations
that (10-1) represent. This is discussed in many textbooks on quantum me-
chanics or classical elecerodynamics. We will proceed algebraically but digress
for a moment to discuss the eigenvalue equation '

LY., = mhY 1, (10-12)

and some applications. The equation, using (10-6), reads

o]
— Yi(0¢) = iﬂ!Yz,,.(ﬂ,qﬁ) (10-13)
¥
s0 that the solution is of the form Y, {0,¢) = O (8} D,.(p) where
abule) |
—— = im®,(p 10-14
n ) (10-14)
The solution to this, normalized such chat
2%
f dp| Tl = 1 {10-15)
. .
is
B(d) 1 gims {10-16)
e = et N
VT

It is sometimes argued that since a rotation through 360°, that is, a transforma-
tion ¢ — ¢ + 2n, leaves the system invariant, it is necessary that

i = ] (10-17)
$0 that m is an intcger. This is not quite cotrect, since the quantities that enter
into physical observabies are of the type [ * Al *(d) Aga(#), with wave func-
tions () of the form * ‘ '

W = 3 G 7’% (10-18)

If we require that these arbitrary wave packets do not change (except fot an
overall phase factor) under the tansformation ¢ — ¢ + 27, then we are led to
the conclusion that the most general allowed values of 1 are m = ¢+ inveger
where ¢ is a constant. Jt is only i we view the operator L, as part of the total set
(LsLy,L;) that we can say something about the conseant ¢. We shall argue below
that the eigenvalues are distributed symmetrically about zero, so that ¢ = 0 or
¢ = 1/2, and for the operarors considered in this chapter, we shall restrict our-
selves to ¢ = Q, thar is, the condition that m i an infeger.
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The eigenvalue equation for L, appears in another context. Consider a
classical rotator, rotating in the x-y plane. If the moment of inextiz is 1, then the
energy is :

Lk
E=— 10-1
- (10-19)
and thus the Hamiltonian is
Lk
= — 10-20
-7 {10-20)
The cigenvalues of the Hamiltonian arc now immediartely seen to be
R?m®
= T 10-21
T (10-21)

and the eigenfunctions are e, There is a degeneracy, since H commutes with
L., and thegtwo eigenfunctions for a given E,, cotrespond to the two senses of
totation. If we have N particles rigidly fixed on a circle, with equal angles 2x/N
between neighbating particles, and if the particles are identical, then the solution
of the energy eigenvalue equation

Hdg(p) = Fdgle) (10-22)

will again be ¢+™, The physical system is unaltered under a rotation of 2r/N
radians {or an integral multiple of the angle), and the solutions should reflect this.
The same kind of arguments that forced m to be an integer now imply thac
A = NX (an integet)." The energy is therefore
F*{ Nm)?

g Nm)

10-2
o1 (10-23)

Let us now return o our equations (10-1), and try to obrain the eigen-
values in 2 manner reminiscent of our treatment of the harmonic oscillator in
Chaptet 7. The eigenfunctions of the hermitian operators L. and L2 will be
otthogonal, if the eigenvalues are different, and with proper normalization, we
will write :

(Ypur| Vim) = v (10-24)
Since
(Yiml(L® + L + L) Yin) _
= {LyYim| Lo¥im) + (L, Yim| L Yin) + 0%
>0 ) (10-25)

1 The reader might look back ro the Dicke-Wittke Gedankenexperiment discussed in
Chapter 1.
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it follows thac
K+ 1)>0 (10-26)

The operators Ly inttoduced in (10-7) are very useful in what follows, and
we shall see that they play the role of rising and loweting operators. First, we al-
ready saw that

L?=L,L_+ L?—#L, {10-27)
In the same way we see that
=L L.+ L2+ 3L, {(10-28)
It follows from the above, as well as ditectly from (9-32) that
Ly, L] = 2L, (10-29)
The remaining commutation relations ate

[L+: Lz] = [Lz + iLy, Lz] = _iﬁLy — AL,

= —#&L, (10-30)
and
[L_, Ly = #il_ (10-31)
From the fact that [ L] = 0, it also follows that
L L) =0
L4 Ll=o {10-32)
This implies that
DLy Yim = LAL2Y = I+ 1) #2, Y1 (10-33)

that 15, Ly Y4, are also eigenfuncrions of L with the eigenvalue chatacterized
by £ On the other hand,

Lx,LJthrZ = (L+Lz + ﬁL—i—) Yim
= whl, Y, + AL, Yy,
Rm+ 1) L. Yy, (10-34)

so that L, Y, is also an eigenfunction of L,, but with m-value increased by
unity. Similarly we can show that :

LL ¥Yim =f(m — 1) L_Y:, (10-35)

so that LY, is an eigenfunction of L, with m-value lowered by uru'.ty. Thus we
call L, raising and lowering operators, respectively. We may write

Y LY = Gm) Vi, (10-36)
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It follows from the hermiticity of L, and L, that

Ig=(I. il =L =il,= Lz (10-37)
Hence, a consequence of
' (LYl LYY > 0 -(10-38)
is that
(Yim| L3LtYim) 2 0 (10-39)
and thesefote (10-27) and (10-28) imply that
(V| (02 — L2+ AL) Yim) 2 0 (10-40)
that is,
W+ Dz2m+m
W+ 1nz2m—m {10-41)
Since {7 + 1) > 0, we can take / > 0 without loss of geperaliey.” Then (10-41)

shows that
1< m<i (10-42)

If there is a minimum value of m{= m_) then for the comesponding
eigenstate

‘ LY =0 (10-43)
We may then calculate 7 by using (10-27) and applying it t0 Yim.: we get
K+ 1)k = m %t — m R (10-44)
Similatly, if there 15 a maximum value of m{ =m,) then
LY, = 0 (10-45)
and an applicaticn of (10-28) to the maximum eigenstate gives
W4+ U R = m?h® + mR? (10-46)
Hence
m_= —I
my = +i (10-47)

Since the maximum value is to be reached from the minimum value by unit
steps (repeated application of L), we find (Fig. 10.1} (a} that there are (2/ 4 1)

states, that is, 2/ + 1 is an integer, and (b) that m can take on the values
F

m=— —IT+1, 142, .., 1—11
The possibility that / is half-odd integral, thar is, / = 1/2, 2/2, . .. will be dis-

2 If we were ta find thar / € —1, we would metely define L = — / — 1, and replace
the old J, with the new, positive L. Nothing would change, since L(L + 1) = I/ + 1).
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- 1)n
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Fig. 10-1. Spectrum of the operator L,
for a given value of /.,

cussed in Chapter 14 where we discuss gpén. In this chapter we restrict ourselves
ta integral values of I,
We may also calculate the coefficients Co(/,7) defined in (10-36). We have

[ Ce(lm) | ¥ maa| Yimpr) = (LoYin|Li¥ia)

= (YIN‘L:FLiY!m)
(Yim| (L2 — L = AL, Yin}
B4+ 1) — m(m + 1))

50 that, with a convenient choice of phase, we get
Cellm) = R[4+ 1) — m(m £ 1)]32 (10-48)

This is as far as operator methods can take us. We shall now use the explicit form
of the operators I, and L. to obtain convenient expressions for the eigenfunc-
tions in terms of the spherical angles § and ¢. This development will patallel
that of Eq. (7-31) to (7-35). We write, a5 already suggested

Yin(04) = Qiml0) ™ (10-49)
The condition (10-45) reads

o] ) )
fi o (579 + icotd a_q’:) Ou(@) &~

) ; 9
= § S0tLe (E — Jcot 0) Buf) = 0 (10-50)
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The solution to this equation is easily found te be
Ou() = (sin ) (10-51)

The appropriate multiplicative constant will be obtained later from the normali-
zation condition, An atbitrary stzte is obtained by the loweting procedure

Yil@d) = C(L_Y " (sin ) & (10-52)

Consider firsc

0 be] ‘
L Yu#d¢) = fei¢ (— > + icotd E‘ch) (sin 8)t £

; )
= f e (— > ! cot 0) {sin §)*
Since one can show that for an arbitrary function f(8)

d A P
(E -+ ! cot G) f(ﬂ) = m d_ﬂ |:(sm 6') f(&):| (10-53)
we have obtained

FUé-be

Yiian=C
i {sin &)*

4 e B .
(—— E) [(sin 8)*{sin §){] {10-54)

The next step is the same, except thar / is replaced by 7 — 1 and the operation in
(10-53} acts on the form obtained in (10-54). Thus

. -2 -
Yiea= e. arll 4 (sin )1 — ! A LA (sin §)%
{sin &) 0 (sin 6) 4

g St A A
= C'(—1)t (sin 6}t 1 E [m E (sin B)Nil (10-55)

In terms of the variable # = cos 8, — 1/(sin #) {d/df} = dfdwx, and (10-54),
(10-55), respectively, read

ei(f—l)v P
Yo =C ———— ——[(1 — 2
i (sin 8)™" du I )
JUDe g

Yiis=C" [(1 — &b 7 (10-56)

(sin 6)—* P

The general form is

eimb 4 i—m ‘
Yo = C (sin )" (;,:) [(1 — #%)] - {10-57)
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The eigenfunctions are t0 be normalized. Since we are dealing with
_ spherical angles whose range of integration is 0 < ¢ < 2x, 0 <8 =< 7 (see
Fig. 9.1) and where the integral over the surface of the sphere (r = constant) is

2x T
[dﬂ :[ dg‘o[ sin 6
2 0
Wwe must impose

! B 1 d I—m 2
(Yim| Vi) = 1 =fa o . d"!f\ﬂ[(lﬁz)—mﬁ (Z) (1— #‘2)'}

(10-58)

The integration is tedious. We content ourselves with writing down the appro-
priately notmalized Yi,(8,¢) with the phases that are conventionally established:
2+ (- m)!
4 ((+ m)

Yin(f) = (—1) [ :‘m Pm{cos ) & (10-59)

with
Y)om = {~1)" Yy {10-60)

The associated Legendre polynomials ate given by

I+ ml (1 —aymirf g\
Prn(u) = (—1) E‘,i— :%: a 211!) (E) {1 —a% (10-61)

with the value for negative m obtained from

L= m)
(¢ + =)

Tt will be enough, for our purposes, ro list a few of the eigenfunctions:

Pru) = (—1) Prm{(w) (1062)

1
Ygﬁ I ——

Vi
3
Yip= —,. [~ ¢é*sinf
Ll \/811-8 n

—
Yo = \/4%_ cos #

13
Y., = /k &% 5in? @
22 \ 32x
5
L Yo, = — /-—e"smt’cosﬂ

N 8r
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5
Y%0 = \/—l?qr (3 cos? @ — 1) (10-63)

With the knowledge that L?, acting on an cigenfunction, as in (9-40}, is ro
be teplaced by /(/ + 1) k%, we can now write the radial differential equation that
determines the energy cigenvalues and eigenfunctions. The equation, which
we will discuss in great detail for a variety of potentials, is

L df d\ 1 d K+1)
‘27[7;(’ a’r)+ F & ]me@
+ V() Rewa(r) = ERgunir) (10-64)

We note that there is no dependence on # in the equation. Thus, for a given /,
there will always be a (2/ + 1)-fold degeneracy, since all the possible m-values
will have che same energy.

Problems

1. A molecule consists of two identical atoms, each of which, in its
ground state, has spin 0. The molecule has, among its possible excitations,
rotational excitations. If oaly rotations about the z-axis are considered, so that
H = L.2/21 and the separation between the atoms is considered fixed, what is
the rotational spectrum? If the atoms have spin 1/2 and they are both in the
same spin state, what is the spectrum?

2. Express the spherical harmonics listed in (10-63) in terms of x =
rsinfcosd,y = rsinfsing,andz = rcosd.

3. The Legendre polynomials Py(x) = P;%(x) can be defined in terms of
the expression (10-61}. Use this definition to show that P{«) satisfies the equa-
tion

(1 — &9 Py () — 2P (&) + K+ 1) Py(ze) = 0

4. Show that the Legendre polynomials Pi(#) satisfy the recurrence
relations

P = ulP (1 — ) Py
4+ 1P =0{+1aP~-(1—HP
U+ 1P — 2+ V)uPi+ P, =0
5. Use (10-61) to show that
zmj 2Pe) = (1 — 2wz + 227172 z <1

=0
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6. Use the procedure outlined in this chapter to discuss rotations in four

dimensions. The generalizztion of I. is now the set of operators that may be
written as

Lij = —#x:0; — x9)
(4,7 = 1,2,3,4). Introduce
(Lo Je i) = (Loa,LaBas)
and
(I_Kl,Kz,Ka) = (Lu.Lu,Lu)
{a) Find the commutation relations of all six operators among themselves.
{b} Show that the operators

IO =J+K;JO =(J - K)

each obey angular momentum commutation relations and that they commute
with each other. Use the final result to determine the maximal set of mutually
commuting observables, and thus the quantum numbers that would be used to
Iabel an eigenfunction,

7. Consider an electron in an arbitrary potential F{r) and a state of

angular momentum /. Show that the probability of finding it ar the point r is
only 2 function of |r|.

- [Hint. Note that the solutions for the (27 + 1) m-values are degenerate, and

that if no special alignment is prepared, all m-values are equally probable. Use
the formula

3
2 | Yug)|® = 24[3;—1
me=—T7

8. A particle in a spherically symmetric potential is in a state described by
the wave packet

¥(o32) = Cly + 3z + zx) e

What is the probability that a measutement of the square of the angular mo-
mentum yields 07 What is the probability that it yields 652 If the value of / is
found to be 2, what ate the relative probabilities for m =2,1,0,—1,— 2?2

9. Consider the following model of a petfectly smooth cylinder. It is a
ting of equally spaced, idencical particles, with mass M/N so that the mass
“the ring is M and its moment of inertia is MR, with R the radius of the ring.

Calculate the possible values of rhe angular momentam. Calculate the energy

eigenvalues. What is the epergy difference between the ground state of zero
4 &Y &t

angular momentum, and the first totational state? Show that this approaches
infinity as N — . Contrast this with the comparable energy for a “nicked”
. cylinder, which lacks the symmetty under the rotation through 25/N radians.
This example implies that it is impossible to set a perfectly smooth cylinder in
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rotation, which is consistent with the fact that for a perfectly smooth cylinder
such a rotation would be unobservable.

10. Exptess L? in terms of 9/0¢ and O/0¢. Write down the differential
equation obeyed by Oy, defined in Eq. 10-49.
{Hint, Use the variable z = cos §). Show that (sin )" is the solution of the equa-
tion for { = m.
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Chapter 11

The Radial Equation

The radial Schridinger equation (10-64) may be wrirten as

#.24d 26 M+ yw :
( wt dr) Ruam(r) — 7 _[V(_r) + 2t ]Rulm(r)
" %E Rumld =0 (1.1)

where we have replaced the label E by # in the subscripts of the eigenfunction
Ruim(r). We will examine the solutions to this equation for a vatiety of po-
tentials restricted by the condition that they go to zero at infinity faster than
1/r, except for the important special case of the Coulomb potential. We will
also assume that the potentials are not as singutar as 1/+2 at the otigin, so that

Lim r?V(r) = 0 (11-2)

r—Q

- It is sometimes convenient to introduce the function

“nlm(f) = arlm(r) (11'3)
Since
' & 2 d\ #ern(r) 1 & .
(F T Z) —_— = = ”nlm(f) (11'4)

r r dr?
it follows that '

Lannl) | 20 D

px 72 [E — V- 2ur

This looks very much like a ‘one-dimensional equation, except that

(a) the potential ¥(r) is altered by the addition of a repulsive centrifugal
barrier,

:lz;,,z,.(r) =0 (11-5)

K4 1) 2

2ar? (11-6)

. V= Vi +

i79
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Fig. 11-1. Effective potential acting in radial equation for & = rR(r) when the
rea] potential is a square well,

{(b) the definition of #um(r) and che finiteness of the wave function at the
otigin require that

‘ w0} = O (11-7)
which makes it more like the one-dimensional problem for which V' = + = in
the left-hand region {Fig. 11.1).

First we consider the radial equation near the origin, dropping all sub-
scripts for convenience. As r— 0, the leading tetms in our equation are

P K1)
T #r~0 (11-8)

because the potential does not contribute for small enough r when (11-2) is
satisfied. If we make the Ansirz

#lr) ~ r (11-9)
we find that the equation will be satisfied, provided that
=1 -+ 1)=0 (11-10}

thatis, r = [ + 1 or s = —/ The solution that satisfies the condition #(0) = 0,
that is, the solution that behaves like #7 is called the regafar slution; the solu-
tion that behaves like r—¢ is the Zrregalar solution. ‘
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For latge r we can drop the potencial terms, and the equation becomes
+—u~0 _ {11-11)
The square integeability condition implies that

1 =fd3r|¢r(r)|"’ =-[: r“dr/dﬂanxm(r} Yia(6,4) %

o
that is,
[ drlaam(7i|? = 1 (11-13)
¢
80 that the wave function should vanish ar infinity. If E < 0, so that
2uE
T —al (11-14)
the asymptotic solution is
’ #r) ~ g (11-1%)

If E > 0, we have sclutions that are only normalizable in a box (see discussion
in Chapter 4), With

— =& (11-16}

the solution will be a linear combination of ##* and e, the'proper combination
being determined by the requirement that the asymptotic solution tie on con-
tinuously to the sclution that is tegular at the origin. We now consider some
examples.

“

A. The Free Particle

In this example V() = 0, but there is still a centrifugal battier present,

The radial equation (11-1) takes the form

d® 2 4 K+ 1) , B
[dr’ r dr e JKW + EBR() =0 (11-17)
If we introduce the variable p = kr, we get

4'R 2 RN+ 1D .
px e g R+R=0 (%1-18)
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This equation can actually be solved in terms of simple functions. The solutions
are known as spherical Bessel functions. The regular solution is

filg) = (—o) (17 }i—)l (s'ﬂp—‘ﬂ) : {11-19)

and the irregular one is

nip) = —(—p)! (% dip)l (m: p) {11-20)

The first few functions are listed below,

. sin p cos p
flg) = —  mlp) = —
P
. sinp COSp cos g singp
ap=—"F— ml)=—-—F——
I3 P P P
. E} 1 . 3
fale) == — - )sin p— —cosp
P P P
3 1 3 .
mlp) = — (T — —) cos p— —-sin p (11-21)
p I3 p

The combinations that will be of interest for large p ate the spherical Hankel
funcrions '

B (o) = jde) + inilp) (11-22)
and

W (p) = [Rf" (o)™ (11-23)

Again the first few spherical Hankel funcrions are

W) =2

ip
KO = — (1 + i)
3 p
() = E (1 + Ed - iz) (11-24)
p PP

Of special interest are
(a) the behaviar near the origin: for p </, it turns oue that

Py

3-5- ...+ 1)

J";(p) = (11-23)
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"~ and
1:3-5. ... (2 —1
nilp) o= — . ( ) (11-26)
For p 3> J, we have the asymptotic expressions
1 /
Jile) == — sin (p - —T—) (11-27)
P 2
and
1 Iz
nilp) &~ — - cos (p - l) (11-28)
P 2
so that '
WD (g) = — = e~ (1129)
Frl
The solution that is regular at the origin is
Rr) = julkr) (11-30)
Its asymptotic form is, using (11-27)
1 . .
Rl(f} ~ [e*:(b—.d'r,fz) - et(Er—f:r/Z)} (11_31)

2ikr
We desctibe this as 2 sum of an “incoming” and an “outgoing” spherical wave.

The nomenclature is atrived at in che following way. The generalizacion of the
one-dimensional flux is

h
§ =5 00 Vule) — W (e) i) (11-32)
i

We shall see that it is only the*lux in the radial direction that is of interest for
large r. Thus the radial flux, integrated over all angles, is

. k3 L
[ AR j(r) = 2 f 40 (,p ™ ¥ o .p) {11-33)

For a sclution of the form

ki
V) = C Yi(6) (11-34)

with

fdﬂ\ Ydfp)|2 = 1 (11-35)
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we get
ﬁ Fike 3 ikr 4 thr
fdﬂjr = ELEC!*‘ |:e " (ﬂ: i’ i erz ) — complex conjugate]
Bk|C2 1
=+—— — (11-36)
¥

The == signs describe outgoing/incoming flux. The factor 1/#? that emerges
from our calculation is actually necessaty for flux conservation, since the flux
going through the spherical surface at radius # is

f 249/, = (independent of r) (11-37)
For our solution (11-31), the incoming flux is, aside from 1/72,
hE D f RE 1
| pilwj2 _— 11-38
w2’ v aE (11-38)

and this is equal in magnitude to the outgoing flux. The net flux is therefore
zero, as it should be, since there are no sources of flux.

In general, Alux conservation demands chat any solution—and this includes
solurions for which V{r) # 0—whose form for r very large must [by the argu-
ments following (11.16)] be

Ri{r) o~ — - [ gy D) (11-39)
2ikr
requires
[ S8y =1 (11-40)
as otherwise the outgoing flux would differ from the incoming one. A function
whose absolute square is unity can always be written in the form

Si(E) = 2l {11-41)
The real function 8,() is called the phase shift because the radial function in the
asymprotic region (11-39) may be rewritten as
sin [r — f/2 + &(£)]

Ry(r) o eitets ; (11-42)
¥

Aside from the phase factor in front, this differs from the free particle solution
7:{&r), whose asymptotic form is [sin (b — r/2)]/kr, only by the shift in phase,
8.(k).

We note that the flux in the ip direction involves

j— (w* Loy, lex conj t) S )
i - = - - - -= CDMPIEX CO ate. ) ~ —— L. ..
Wl = r o8 plex conjug ,
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and at large distances, such a flux, when multiplied by the area facror #2402, sull
vanishes as 1/r relative to the dominant term in the radial flux, This is the
justification for ignoring all but the radial flux at latge distances.

B. The Square Well, Bouad States

Consider the potential
Vir) = -1, r<<a
u =0 r>a (11-43)
Then the radial equacicn has the form

IR 2R M)

2
R+—ﬁ‘;—(Vu+E)R=o r<a

dr? r dr i
4R 2 dR I+ 1) 2uE

- =_T~ =R= 11-
Py . 7 2 R P R=20 r>a (11-44)

We look for bbund state solutions, for which E < 0. We write

2
ﬁm:‘(Vo+E)=x‘-’

T E= —af (11-45)
ﬁﬂ

The solution for r < 4, which must be regular at the origin, is
R(r) = Aflxr) {(11-46)

The solurion for r > 4 must vanish a5 r —> «. The second of the equations
(11-44) is just the equation for the sphetical Bessel fanction, except that £ is
teplaced by jer. The solution that behaves like ¢ now becomes the exponenti-
ally falling one, that is, we have

R(») = BAPO (ian) {11-47)

for v > a. The two solutions must match at # = 2 and so must the derivatives,
This leads to the condition

M] = i [‘Mj
K[ 7P)  Joa RO i {11.48)

This is & very complicated transcendental equation involving I V4, and E. For
« ¢ = 0 it simplifies greatly if one uses the funcrion #(r) = rR(r). The eigenvalue
is obrained by matching 4 sin xr and Be=r ar » = 2. The derails are left as an
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sinKr

Vir}

Fig. 11-2. The shape of the wave function #(r) = rR(r) for an acrractive square
well when thete exists one bound state (/ = 0},

exercise for the reader; the shape of the radial wave function #(r) for the first and
second bound states is exhibited in Figs. 11.2 and 11.3.

Let us return to Eq. 11-48 for the case of a very deep potential for which
xa 3 I In that case the left side of the equation simplifies, since we are justified
in. using the asymptotic form of jp). Computation shows thar {11-48) rakes
the form

1 £
— -+ xcot (m - %) = (right-hand side) (11-49)
P

The right-hand side does not contain Vi, and if | B, <& ¥ the largeness of xa

sin w'r

Fig. 11-3. The shape of the wave function #{r} = rR(r) for an arrracrive square
well when there exist two bound states {/ = 0). Only the wave function for the
second bound state is sketched in this figure. '
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implies that the cotangent must be dlose to zero. Thus we have approximately

I .
K- — o (n+ 3= (11-50)
Since fot |E; <« Vy we have
E
ts . I1-
K o kg (1 + 2Vo) {11-51)
where
2ul,
K? = % (11-52)
(11-50) reads
E {41
Lo _1+[”’+( + 1)/2] r  (11s3)
2V, Kod

Thus the levels that are far from the bottom of the well are approximately equally
spaced, for all / & xoz, with the spacing . - '
AE L

o~ — 11-54
2V Kot ( )

A related problem is the infinite box in three dimensions. Here

Vir) =0 r<a

=% r>a C(11-59)
In this case, writing .
2uE
F = (11-36)
the solurion that is regularat r = 0 s
- . R = Ajer) {11-57)

with the eigenvalues detetmined by the condition that the solution vanish at
r = a, that is, by

filka) = 0 (11-58)

The roots for a few values of / are listed below.

I=0 1 2 3 4 5

3.14 449 576 6.99 8.18 9.36
6.28 7.73 9.10 10,42
9.42 P
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If the first 100t for a given / is Jabeled # = 1, the second roor # = 2, and so on,
and if we use the accepred spectroscopic netation for the / vajues,’

S:i=0
P:i=1
D:l=2
F:l=13
G:l=4

then the order in which the levels occur is
15; 1P; 1D; 25, 1F; 2P 1G, 2D, 1H; 35, . . .

Suppose we consider a model of the nucleus thar consists of protons and

neurrons inside such an infinite box. Since neutrons and protons are spin 4 par- -
ricles, that is, fermions, no mate than two neutrons and rwo protons can occupl
a given state. 1f we concentrate on protons, we observe that in the 15 state only

#we protons czn appeat. In the nexc level we have / = 1, so that chere are three
states, and hence six protons will fill it. For the 1D level, with five possible
m-values (since { = 2}, fen protons are required to fill this “shell.” Thus levels
will be filled when the number of protons is 2,8 (= 2 4 6), 18 (= 2 + 6 4 10},
20 (= 18 + 2), 34 (= 20 -+ 14), 40, 58, 68, 90, 92, 106, . . ., and similarly for
the neutrons. A study of real auclei shows that for the “magic” number of
protons and neutrons, 2, 8, 20, 28, 50, 82, 126, . . ., these nuclej exhibit special
characteristics that can be associated with fitied levels, that is, closed shells. The
difference between the real "magic” numbers, and those obtzined in our primi-
tive model comes about because there is an additional potential that depends on
the spin and that shifts the levels about somewhat, thus reordering the numbers.
The shell model of the nucleus, when propetly constructed, explains many of the
properties of nuclei. What is not obvious is why nuclei should behave like a
collection of parricles in a box.

C. The Square Well, Continuum Solutions
With E > 0 we write

2iE
;2

= & (11-59)

1 The historical crigin of this notation was the description of spectral lines as Shatp,
Principal, Diffuse, . . . , and their subsequent identification. It does not make sense, but it
stuck, ‘The natation hete differs from that used in atomic physics, where the conventional
notation adds the /-value o the index, so that the order would be written in the form,

18, 2P, 3D, 25, 4F, 3P, 5G, 4D, 6H, 35, . ..
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The solution for r > & will be a cambination of the regular and irregular solu-
tions of the free field equation :

Ri{r) = Bjlkr) -+ Cni(kr) {11-60)
while the solution for » < # must be the regular solution, that is,
Ri(r) = An{er) (11-61)
where
K = ﬁ};—m (11-62)
as before.
The marching of L at v = & gives
Ry dr
) [d;'agp)/dp] s [B@/dp + 'Cdﬂ,,/'dpJ (1163
FCY I P Bip) + Cullp) | mita

from which the ratio C/B can be calculated, This fatio can be related to the phase
shift that eppeared in {11-42). We do this by looking at the asymptotic (large r)
form of {11-66)

Rify) ~ -g [sin (.ér - “l;;) - % €os (fer - ITT):I (11-64)

which is to be compared with (11-42), rewricten as
. 1] . I : Y
Rilr) ™ | sin Br — > cos 8k} -+ cos [ kr — ) sin &1(k)
r _ .

We see that the relation

£ ana® (11-65)
B
holds.

The actual computation of C/B from (1 1-63) is tedious, except for / = 0.
As for the bound state problem, the use w#(r; = rR(r) simplifies the calculation
greatly. One only needs to match A sin «r 1o B sin 4» + € cas br at r — ato
obtain an expression for tan &. The tesults for this case are schematically drawn
in Figs. 11.4 and 11.5. They show that an attractive potential tends to “draw in”
the wave function, while a repulsive potential tends to push it out, We will
return to these matters in Chapter 24, when we discuss collision theory.

Befote cancluding this chaprer, we focus on an important relation thar can
be obtained by solving the free particle equation in two ways. One solution is
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Fig. 11-4. Continuem solution x(r) = rR(r) for attractive potential ({ = 0}.

obtained 25 a superposition of our separated solutions (11-30) multiplied by the
apptopriate spherical harmonic Yi(f,¢):

WO = 3 3 Awjihr) Yinl0d) (11-66)

=0 m=—1

Another solution of the free particle equation, which reads

(V:+ &) glr) = 0 (11-67)
before the separation into angular and radizl parts is made, is the plane wave
wir) = & (11-68)
bl
Lo
- Pl —
,/’ N } I Solution for ¥ = 0 7 ™
’ o~ | -
/ —\N - /\
N Z -
.
. N

Fig. 11-5. Continuum solution %(r) = +R(7) for repulsive potential (/ = 0).
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| We may therefore find Ay, such that $(r) = #* " in {11-66). Note that the
spherical angles {0,¢) are the coordinates of the vector r telative to some arbi-
tarily chosen z-axis (see Fig. 9.1). If we define the z-axis by the direction of &
{until now an arbitrary direction), then

eik-r — eikrcosﬂ (11-69)

Thus the lefe side of (11-66) has no azimuthal angle, ¢, dependence, and thus on
the right side only terms with = = 0 can appear; hence, making use of the
fuct that

20+ 1\t
4x

Yulbp) = ( )m Pi{cos 8) (11-70)

whete the P; (cos ) are the Legendte polynomials, we get the relation

ei.ércosﬂ = i (2‘[ +1
4

)“2 Ajilkr) Pi(cos 8) (11-71)

P

We may use the relation

l[ l d(cos #) Picos §) Pr(cos ) = b (11-72)

2J . ! ! T )
which 15 a direct consequence of .the otthonormality relation for the Y, and
{11-70) , to obrain

1 -
Aijikr) = [4n(2) + 1)]"2f dzP\(z) £ (11-73)
-1

The integral can be looked up, or worked out by comparing both sides in the
limit that £7 — 0. In any case, what results is the expansion

Fhreoss _ zm (241 i'5,(kr) Pycos 8) (11-74)
=)

which we will find exceedingly useful in discussions of collision theory.

Problems

1. Consider / = 0 bound states for an attractive square well. Find the
eigenvalue condition for a bound state, What is the depth of the potential for a
state that is barely bound?

2. Assume that the deuteron (consisting of a neutron and & proton, equal
in mass}) is a bound state with / = 0and the potential square in shape and of range
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ro = 2.8 X 107" cm. Given that the binding energy is —2.18 MeV, find the

depth of the potential.

{Hint. Expand about the case of zero binding energy discussed in Problem 1),
3. Consider neuron-proton scattering, assumed to be interacting through

a square well potential of range 2.8 X 107" cm and depth 20 MV, Calculate the

phase shift as 2 function of energy for very low energies, for / = 0.

4. Calculate the = 0 phase shift for a square well potential. Use the pro-
cedure outlined following Eq. 11-65 to work out both the attractive and the
repulsive potential case. Discuss vatious limits, such as E large and small, V5
large and small.

5. Show that for / = 0 scartering by a square well of arbitrary range and
depth V5, it is always possible to write the phase shift as an expansion

1
Ecot do = — —+ r.g 22 + 0(FY
“

Obtain an exptession for 2 and rgin terms of the pafameters of the well.

6. Consider a potential of arbitraty shape that vanishes for r > 2. Let the
logarithmic detivative of the fadial function inside the potential,

1 4R(r)
R dr |,—

be a slowly varying function of the energy. Considet [ = 0.

= fi(E)

{a} If the potential has a bound state with eneagy, Eg, what is the value of
Fo(Eg)?

(b} If f(E} is independent of E, whart is the phase shift as a funcrion of
energy?

(c) If fi(E) = fo(Er) + (E — Eg) i/, how does fi” entet into the phase
shift?
It is simpler to work out (b} and (c} 2bove in rerms of & cot §,(£), instead of the
phase shift, and that is a preferable way to present your results.

7. Give a general argument for why 8;(£) should be an odd function of 4.
Check rhat this is so for the square well [using (11-65), for example]. Show that
S{—k) = S*(k)

where 5;(#) is defined in {11-41).
8. Calculate the function 5:(£) for a potential
V() = « r<a
V(r) = { r>a
Consider the / = 0 phase shift. What is it for £z very small? What is it for £z very
large? Note thae this potential is z model for an impenetzable sphere.
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9. Use the solution (11-63) together with the values of the spherical
Bessel functions near the origin given in {11-25) and (11-26) to show that
tan 8(#) — 0 as £ - 0. How rapidly does it approach zeto for a given 7

10. Consider the / = 0 radial equation for the potential

V(,-) = Vu[é-s(ffrolfa — 2 g~Urelie]
(known as the Motse potenial). Find the energy eigenvalues by simplifying the
differential equation. Do this by defining a new variable x = G~/ with ¢
chosen to simplify the equation as much as possible, and then treating the
cquation in the manner that the simple harmonic oscillator problem was treated
in Chapzer 5.

Plot the potential. Show that for a deep, wide potential, the low-lying
bound states approximare those of a harmonic oscillator, and explain why
this is so.

References
The general properties of second-order differential equations in the context of
quantum mechanics are discussed in
J- L. Powell and B. Crasemann, Quantum Mechanics, Addison-Wesley, Inc., 1961.
A comprehensive discussion of such equations may also be found in

P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill
Book Co., Inc., 1953.
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The Hydrogen Atom

The hydrogen atom is the simplest atom, since it contains only one elec-
tron. Thus the Schrédinger equation becomes a one-patticle equation afier the
center of mass motion is separated our. We shall deal with hydrogenlike atoms,
that is, atoms conuining one electron only, but allowing for a nucleus more

complicated than a single proton. The potential then is

Zet

r

¥ir) = — (12-1)

and the radial Schrodinger equation is _ :
£ -2 4 2 Zet W40
(m+—m)R+i[E+— - -(—i:rRz o (12-2)
r i r 2ur’

We will concentrate on the bound states, that is, E < 0 solutions. It 15 con-
venient to make a change of variables,

8u| E| \12
p=(%) r (12-3)

The equation then reads

4R 2 4R K41 (x 1)
- — R+|{——-)rR=0 12-4
dp? * p dp e + p 4 (12-4)
where we have introduced the dimensionless parameter
Zet m )uz ( #cz )1/2 .
A=-—|—"77} =Za{— -
+ s 21 1z

The second form makes it easier ta compute with it, since ¢ = 1 /137 and the
energy is expressed in units of the rest mass; the first form does, however, make
cleat that the welocity of light ¢ does not really appear in the equation, that is,
that it is strictly a nontelativistic equation.

195%
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We try to solve {12-4) in what is by now a familiar way. Fitst, we extract
the large g behavior. For large p, the only terms that remain in the equation are

#R 1

— —~-R>~0 12-6

i (12-6)
and the solution, which behaves properly at infinity, is R ~ ¢7#% As in our
trearment of the harmonic oscillator, we write

Rlp) = e Glp) {(12.7)

substitute this into {12-4), and obtain the equation for Glp). A little algebra,
which we do not reproduce, leads to the equation

d”G_( 2)::’G+|:k—1_!(l+1)

dp? p/ P ot

] G=20 (12-8)

We now write a power expansion for G(p). This takes the form

G} = ' 2 " (12-9)

=0
The fact that R(p), and hence G(p), behaves like p! at the origin was established
at the beginning of Chapter 11 for all potentials satisfying {11-2). When (12-9)
is substituted into the differential equation, we find a relation between various

coeflicients ... The tecursion relation is obtained from the differential equation
obeyed by

HG) = 35 angt (1210)

whichis

{ dH A—1—
d2H+(2+2—1) ATy Gz

dp* p dp P
as can easily be obtained by substituting G(p) = p'H(p) into (12-8). We then have

o

o] [T C I NSRS I
2 :

=]

{(12-12)
that is,

oo

S+ Dt @+ Dan]l + O -1 —fi—nafsrt=0

=0

Since this must vanish term by term, we get the recursion relation
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@nyl #? + [—'— 1-— X

#n (4 D(n+ 20+ 2) (12-13)
For large » this ratio is
a 1
S (12-14)
A

and, a5 for the harmonic oscillator problem, we can show that we do not geta
solution R(p) that is well behaved at infinity, unless the series in {12-9) termj-
nates. This means that for a given /, for some » = #, we must have

A=mn-+I+1 {12-15)

Let us introduce the principal quantum number n defined by

n=un-14+1 (12-16)
Then, it follows from the fact that », > 0, that
La>i+1
2. » is an integer
3. the relation
' A=n {
implies that
1 Za)?
- -1 . {12-17)
2 n?

a result familiar from the old Boht model. Notice that it is the reduced mass that
appears ‘in the expression; this, of course, is not peculiat to the differentia)
equation approach. In the old Bohr theory, too, a proper treatment of the
dassical otbits, subsequently to be restricted by the quantization of angulat
momentum condition, would have introduced the reduced mass in the energy
formula. The presence of the reduced mass

_mM
T om+ M

(12-18)
whete m is the electron mass, and M the mass of the .nuclcus, means that the
frequencies o
E:— E; we?/2h 1 1
;= T = —— [ -
@i f 14+ m/M (Z2) (,,‘.z n,-’) . (12-19)

differ slightlj for different hydrogenlike atoms. In particulat, the difference
between the hydrogen specrtum and the deuterium spectum—whete M, the
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Fig. 12-1. Orbits for 2 potential that does not have the exact 1/r form do not
close upon themselves and precess as shown here. The osbits remaig planar as long
as the potential is radial.

nuclear mass, is very close to being twice the proton mass—was responsible for
the discovery of deutetium by Utey and collaborators in 1932

'The energy does not depend on /, that is, for 2 given » the energies of all
the states such that J 4+ 1 < # are degeneraie. We did expect a (27 + 1)-fold
degeneracy of the energy states for a given /, since the radial equation did not
depend on m; here we find that although the radial equation does depend on /,
there is an additional degeneracy. Such 2 degeneracy was formerly called “acci-
dental,” since there was no obvious reason for it. This, however, depends on
what one means by “obvious.” It is already known in classical mechanics that
the potential 1/r has some special features: the orbits consist of ellipses that
maintain their ofientation in space, instead of forming precessing orbits (Fig.
12-1). Small modifications of the potential do cause a precession. Such modifi-
cations may come from a variery of sources, for example, the perturbations due
16 other planets, in the Kepler problem. In considering the planetary orbit of
Mercury, it was found thar after allowance was made for the effects of other
planets, a precession of the perihelion in the amount of 42" per centufy re-
mained unaccounted fot, and this was finally explained by Einstein's generzl
theory of relativity, which predicted just the right amount of 1/r* potential to
be added to the Newtonian 1/r.

In quantum mechanics, t0o, there are perturbations, so that the /-degen-

1 Thete ate, of course, other shifts in spectral lines that arise from relacivistic effects
and fram the existence of electron spin. These will be discussed lacer,
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eracy is not really what is obsetved. In first approximation, however, we have,
for a given n, the possible/values of/=0,1,2, .., (2 — 1), and for each there
is the (2/ -+ 1) degenera¢y. Thus the total degeneracy is

R—1

T+ D= (1220,

=0

Strictly speaking, there are two possible states for the electron because of its spin,
so that the true degeneracy is really 2x2,

Let us now return to the diffetential equation. If we set A = # in the
recussion relation {12-13) so thac

E+i4+1—n
(+ 1)k +204+2%

dry1 =

{12-21)

we find that
r—{(k+ 1+ 1) _n—(k+l)
(64 10+ 2/42) BE+ 2741)

7 (4 1)
1@t X

arp = (—1y+t (12-22)

With the help of this we can abtain the power seties expansion for H{p). Equiva-
lently, we cbserve that the equation for H(p) is that for the awociared Laguerre
polynomials: :

H(p) = LZ3 () (12-23)

The polynomials are tabulated and their various properties can be found in the
mathematical Jiterature.? _

After conversion back to the radial coordinare r and aftet normalization,
the first few radial funcrions can be computed. These are listed below. We use

3
= — {12-24)
wa

in the tabulation Rni{(r): .

3 3)2
Rm(r) = 2 (i) 'er/n

do

LAYL Z
Rao(r) = 2 (—) (1 - 7:') gL 2
2ay 2a, .

% An excremely useful book is M, Abramowitz and [, A, Stegun (eds.), Handbook of
Mashematical Functions, National Bureau of Scandards Publication, 1964,

s
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1 ZNX?Zr s,
' Rulr) = V3 ( 240) P
z \ 22r | 220" _spre
Y 1= 2L aTl
Raolr) (340) [ 34 + 27403] ‘
44/2 Z \¥t Z, Z
Ry(r) = —"\C( ) = (1 - ) Pt
3 Jae 4o Gy
AVEN AN AN & AL
Raalr) = —27\/5 ( 3do) (70) PR (12-2%)

The following qualitative features emerge from the sampling of eigensolu-
tons:

{a) The behavior of # for small r, which forces the wave function to stay
small for a range of radii that increases with /, is a consequence of the centtifugal
repulsive barrier that keeps the electrons from coming close ro the nucleus.

(b) The recursion relation shows that H{p) is a polynomial of degree
#. = # — ! — 1, and thus it has », radial nodes (zeros). There will be # — [/
“bumps” in the probability density distribution

"B = PR (12-26)

When, for a given #, / has its lazgest value / = # — 1, then there is only one bump.
As (12-25) suggests, and as can be seen from the sclution to the differential
equation,

Rima(r) oyt g~ Efem {12.27)

Hence P(r) o r*» ¢ 277" will peak at a value of » determined by

4P z
(f') — (angﬂ_l — rﬂn) e—ZZr/ﬂnﬂ =0 (12-28)
dr 2o
that is, at
g
_ T 12-2
r Z ¢ ?

whick is the Bohr atom value for circular orbits. Spaller values of / give proba-
bility distsibutions with more bumps. One can show that they correspond to
elliptical orbits in the large quantum number limit.

(c) Plats of the radial probability density P{r} for finding the electron ata
distance r from the origin can be constructed with the help of the wave func-
tions. Figure 12-2 shows the general pattern. We must remember that the wave
function afso has an angular part, whose absolute squate is P;™ (cos 8)%. Plots of
the associated Legendre functions Py™(cos 8) are given in Fig. 123, As m
increases, the probability density is seen to shift from the z-axis toward the
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Fig. 12-2. The radial wave functions #(r) = rR(r) and the radial’ ‘probability
density function #2(r) for values of » = 1, 2, 3, 4 and the values of / possible. The
left abscissa measures #(r) and the right abscissa measures #%(r). The wave functons
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Fig. 12-2. continued

equartorial plane. When || = /, then | Py (cos 8)|2 = sin® @ as can be read off
from Eq. 10-55. This funcrion is peaked about # = /2. As /increases, the width
of the peak can be shown to decrease like /Y%, and thus for large quantum
numbers we get the classical picture of planar orbits. The finite width of the
peak can be understood from the following considerations. When |m| = /, we
have L2 = P and consequently L.* + L,* = / Thus the angular momentum
vector can never be perfecdy oriented along an axis. Incidentally, the degeneracy
in m allows us to orient the “othit” relative to some other axis, so that there
really is no distinguished z-axis. Thus a state that is an cigenstate of L. with
eigenvalue [ will be “oriented” in the x-direction. The wave function will now be
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Fig. 12-3. Shapes of the assaciated Legendre polynomials as a function of o,
the angle between the z-axis and the equarorial plane, denoted here by the x-axis.

a linear combination of the Y7,,(8,¢), but because of the degeneracy, the encrgy
will be the same as for the z-oriented otbits.
{(d) Given the wave functions, we can calculate

{r*) =f dr 2% [Ru(r)] (12-30)
0
Some useful expectation values are given below:

(1) = — 3t — K+ 1))
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2,2
(= S 5 bomt k1 — 30 + 1))

(-
r - ot
22

(j)  anl+ 3) (12-31)

Problems

1. Compare the wavelengths of the 2P — 1§ wansitions in (1) hydrogen,
(2) deuterium (nuclear mass = 2 X proton mass}, {3} positrenium (a bound
state of an electron and 2 positron, whose mass is the same as that of an efectron).

2. An electron is in the ground state of tritinm, for which the naucleus
consists of a proton and two neutrons. A nuclear reaction instantanecusly
changes the nucleus to He?, that is, two prorons and one neutron. Calculate the
probability that the electron remains in the ground state of He®, What is the
probability that the electton is free, with momentum »

[Nete. The momentum eigenfunction for a free eleceron is ei"’-’“(zgrﬁ)*ﬂt'ﬂ,]

3. The relativistic analog of the Schrddinger equation for 2 spin O electron
(thus not applicable to the real electron) is the opetator version of

(E— V)T = pc + mtct

E Z& 1\ me\?
= - = —V -
(fic fic r)w 2"&-i_(ﬁ,)“l
{a) Find the radial equation,
(b) Find the cigenvalue spectrum by noting the close relationship of the

tadial equation obtained in (a) with the radial equation for the hydrogen atom
problem.

that is,

4. Using the expression for {1/r},; calculare the expression for

Thea = (ﬁ:%),M

for an arbirrary hydrogen atom ei genstate (with Z arbitrary). Show that generally
for this potential - :

(Ty= =407
" This is a special example of the Virial theorem.
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5. An electron in the Coulomb field of 2 proton is in 2 state described by
the wave function
H4r00(t) + 3fan(r) — youlr) + V1o Yna(r)]

(a) What is the expectation value of the energy?
(b) What is the expectation value of L®?
(c) What is the expectation value of L.?

6. An electron in the Coulomb field of a proton is in a state described by

the wave function
e \32
) = (=) e
VT

What is the probability that it will be found in the ground state of the hydrogen
atom?

7. Anclectron isin the # = 2,7 = 1, m = 0 state of the hydrogen atom.
What is its wave function in momentum space?

8. The expectation value of f{r,p) in any stationary state is a constant.
Calculace
i
A{eep) = o (HepD)
- for a Hamiltenian
H = p*2m + V(r}
and show that

(Z) = wwven

Use this to establish the result of Problem 4.

9. Use the techniques develeped in this chapter to discuss the three-
dimensicnal harmonic oscillator problem, with

b3
P

= — + Imu??
2m

Note that the associated Laguerre polynomials also appear in this ptoblem.

References

A very thorough discussion of the hydrogenlike atoms is to be found in

E. U. Condon and G. H. Shortley, The Theory of Atoméc Spectra, Cambridge
University Press, Cambridge, 1955.

The problem is discussed in every book on quantum mechanics.




chapter 13

Interaction of Electrons with
Electromagnetic Field

In Chapter 12 we discussed the interaction of an electron with the static
Coulomb field due to a point charge. To generalize this to the interaction with
an external magnetic or electric field, we must first review the classical theory.
Maxwell’s equations in Gaussian units tead, in the vacoum,

V- B(r) =0 _ (131)
v X Er) + iw = (13-2)
¢ 0
V-E(r.s) = 4rp(xy) . (13-3)
v X By LBt (13-4)
¢ o ¢

where p(r.7} and j(r ) are the charge and current densities that ate the sources of
the electromagnetic fields Efr,f) and B(r £). The conservation of charge equation

aig’—‘) + ¥-jics) =0 | {13-5)

is automatically sarisfied.

We may satisfy the first two equations by expressing the fields in tetms of
a scalar potential ¢(r,2) and a vector potential A(r.z)

B(r,t)iﬂ: v X A

1 0A(ry)
[4

Een) = — — 2 gy (13-6)

iy
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The fields E and B do not determine ¢ and A uniquely. New potentials, given by
A'lleg) = Alrg) — Vf(ry)

#0e) = ptes) + L A

(13-7)
ate easily seen to yield the same E and B fields. The transformarion from the set
(A,p) to (A',¢") is known as a Bauge transformation, and the invariance of Eand B
allows us to choose the arbitrary function f{r,£) in the most convenient way;
The source-dependent pair of equations (13-3) and (13-4) now read

Vo) — 2 (9-A) = duplr) (13.8)
and
1OAGH | 10 4r
vx(v::(A)+(z 2 PV St ()

which may be rewritten as

%A (r, ' 4
—VA(r,) + c% —a—gﬁ +v (v-A -+ % %‘i—) = ?Tj(r,t) (13-9)

If ¢he charge distribution is static, thar is, p(r) is independent of time, it is con-
venient to choose the gauge such that

VA@rH =0 (13-10)
This choice of f{r,} is given the name of Coslomb gauge. In that case we have

—Vi(r) = 4mp(x) (13-11)

that is, we have a time-independent scalar potential, and then the equation for
A(r,f) reads

1 OA(y)  4r

R (D) (13-12)

—VArs) +
When the charge distribution is not staric, it is more convenient to choose
the so-called Lerensz gauge for which

1 dwlr) _
o

v-Alr) + — 0 ' (13-13)
e /3 )

This leaves the equation for the vector potential unaltered, bur now the scalar
equation also obeys a wave equation. A technical point-worth noting is that the
. relation

VX (VXA) = —VA | w(V-A)
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used to obtain (13-9) is only valid in cartesian coordinates. Thus, V2A(r,2), as it
appears, must be calculated in terms of x, ¥, and z.

The equation describing the interaction of a point electron of mass  with
an electromagnetic field is the classical Lotentz force equation

dr
_

We now assert that this equation will be obtained if the classical Hamiltonian
for an electron in the 2bsence of fields

= —¢ [E(r,t) + -v? X B(r,{):l (13-14)

2
He = B {13-15)
2u
is changed by making the alteration
p—p-+ fA(r,t) (13-16)
<

and adding the potential e¢(r) (we shall deal with static scalar potentials),
so thac

= zi[p + EA(r,t)]’ + eg(r) (13-17)
411 c

‘We shall leave the ptoof of this statement as an exercise for the reader.! The
comresponding Schrédinger equation with the static potential taken over to the
right side is

1 fA e \?

w\FvT (A ) = [E+ ep0)] ¥(x) (13-18)

The left side is

i(i.v+-A) (i.v-Hwa)
2\ i ! 3
A ;
== - e P oayy S ay
i pe 2ue®
R: el e
= — Vi — —_A. — -
» ' 0 A-vy 4+ 2 Ay (13-1%)

Fora constant uniform magnetic field, B, we may take?
x A=—jrXB (13-20)
! See foornote 4, p. 216.

# Note that this choice is not unique, since we may add the gradient of any function
to A without changing B. This choice, however, is very convenient,
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This means that the three components of A are
A = —3(yB. — =By, zB. — xB,, xB, — 3B}
and consequently
VX A= (3B + iB;, B, B,)
=B

. Hence the second term in (13-19) becomes

2R X BV — — lBrxw
2uc
= 2— BrX— V#v — B Ly (13-21)
and the third term is
& B et _— . 2 - s
ot X B = B = By = )Y (13-22)

if B is the direction that defines thie z-axis. This is of the form of 2 two-dimen-
sional harmonic osciliator potential.

Let us compare the magnitudes of the two terms. The ratio is estimated
with {L.} taken of order  and {x* + 5*) of order #,%, with &y the Bohr radius:

(e®/8ue?) ae®B? R e2 B 1 B
(e/2uc) BB 4 Fie efa 548 e/ai
_ B
T 548(4.8 X 1079)/(0.5 X 107%)
B

T 13-2
9 X10° gauss (15-23)

Thus in atomic systems, with the kind of fields available in the laboratory, that is,

B 5 10 gauss, the quadratic term is certainly negligible. The term linear in B,

compared with the Coulomb potential energy can be estimated in a similar way
(e/2uc) B 1 fifuc 1, B B

e/ an T2 e/ an T 274 o/ ag? T 5% 10 gauss

(13.24)

50 that the lincar tetm will only slightly perturb the atomic energy levels. The
quadratic term can become very important under two conditions: if the mag-
netic ficld is very intense; it is believed that fields as large as 10'* gauss may
exist on the surface of neutron stars, and this would radically alter the scructure
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of atoms.? The quadratic term will also be important when we consider the
mactoscopic motion of an electron in an external field.

Let us first consider the linear term alone, and pick the z-direction to
coincide with that of B. Then the Hamiltonian with B = 0 is altered by the
addition of

H =51, (13-25)
2uc

If we define the frequency, called the Larmor frequency,

eB
— = w (13-26)
2pc
and deal with energy eigenstates that are simultaneously eigenstates of L? and
I, then the extra term (13-25), when acting on an eigenstate, yields 2 number,
namely,

Hittnin(t) = Fico Lottt (13-27)

where m is the z-component of the angular momentum eigenvalue, with —/ <
m = I Thus the existing energy levels, with their {2/ + 1)-fold degeneracy
ate split into (2/ 4+ 1) components that ate equally spaced, with energies given by

E__—_}M(Za)z

2 u?

+ ﬁc_-s:,m (13-28)

The size of the splithg is
. eBR i ( B ) e
2uc B 2pc \efas®] as
_ R (@)2 B )
N 2uc \ R efay®

(atuc’) @

il

e/ 4[;2

= (%B—) X 13.6 eV
2.4 X 108/ -

Since there are selection rules (to be discussed later) according to which
only transitions in which the m-value changes by zero or unity are allowed, it
turns out chat the single line representing a transition with B = 0 splits into
three lines, as tan be seen M Fig. 15-1. This effect is the wormal Zeeman effect.
Actually, unless the elecaon spin state in the atom is one in which the spin is

18ee R. Coken, L. ]'.o_denquai, and M, Rudetman, Phys. Rev. Letters, 23, 467 (1970).
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. x m=2
/"/ eBh/2uc 1
. /’:.———’——— : "
TR TR -
N:\—_\_“—‘_“ m=—1
\\-"‘-
-~ m = -2

=1

=

myp — =1

mp = = 4]
kil

' = 1J_E:”_’_ ______ -0

n = -1
j g A N’
AF + eBA AE AE — eBR
2uc 2ue

Fig. 13-1. Normal Zeeman effect: of the 15 possible rransitions berween the
{ = 2and /= 1 states, split by the magnetic field, only 9, corresponding to am =
m; — my; = —1,0,1 occut, in the form of three lines.

zero, the interactions of the electron spin with the magnetic field changes the
pattern predicted above. The mote common amomalous Zeeman effecs will be
discussed when we have learned about spin. '

It is of some interest to discuss the solution of an electron in a constant
magnetic field under conditions where the B? term is not negligible, and where
the Coulomb potential can be neglected. Under those conditions, with B again
chosen to define the z-ditection, the Schrédinger equation reads

A2 B gl
- VY L+ (2 ) v = B (13-29)
21 2uc Suc )

where we have used (13-19), (13-21), and (13-22). The presence of the “potential”
(x* + »*) suggests the use of cylindrical coordinates for the separation of the
variables. Writing

x
¥

If

peos ¢
psin ¢ (13-30)
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we follow the procedute outiined at the beginning of Chapter 10 to arrive at

o] o} sin ¢ D
E = cos ¢ b_p - T a’"
%;— = sin ¢ a% + co: 4 % (13-31)
and hence '
I R S 1332
022 3 p Op ot O
If we now write
P(X) = un(p) e oits (13-33)
we find that the differential equation sarisfied by ..(p) is
d —Lﬁ—ﬁu— B plu (2—@ ﬂ{’?-—.k’)u—o
dp? p do @ 4R2c? i #i*
(13-34)
If we introduce the variable
= f;% p (13-35)
we %n_rewrite the eﬁuation in the form
c?a lde m?
Tt LT e et = (13-36)
where '

e (B
= — — ) — 2 -
B (E o ) m (13-37)
It is faitly straighrforward to detetmine that (a) the behavior of #(x) at infinity,
determined from

d*u . o
— —xly =
dx?

is #(x) ~ &= and (b) the behavior of u(x) nea¥ x = 0, determined from
oy

Ca B s
dxt | oxdx a2t o
is #(x) ~ x| We thus write

wlx) = :c‘l'"i 2 Gy}

(13-38) -
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and determine the differential equation obeyed by G(x).
A little algebra leads to

4G +(2|m| +1

AG
) 2x)1+(1\—2—2|m|)c=0 (13-39)

X
This can be brought into the same form as (12-11) if we change variables to
y=a (13-40)
The equation then takeg the form
d'G 1 G  A—2-2
L6 (Y r2 el g
& ¥ dy 4

We can now proceed as in Chapter 12. Comparison with (12-11} shows that we
must have

o {(13-41)

1 1+ |m|
—A——— =n 13-42
4 2 § (13-42)
Y
as an eigenvalue condition, with #. = 0, 1, 2, 3, . . . . This implies that E —

Rk /2u, the energy with the kinetic encrgy of the free motion in the z-direction
subtracted out, is given by

Bk eBR
E —

= @+ 1k jm| + ) {(13-43)
2u 2uc

and
Gy = L ) (13-44)

Qur discussion of this solution will be confined to the classical limit. To do
this, we first teview the classical theory. Given the Hamiltonian (13-17), withour
the scalar potential term, we have!

. Sl COE. (13-45)
®
and with A = —ir X B, we obtain
erv=rXp+ErX (—3r X B)
=L — zi[r(r-B) — r'B] (13-46)
c

+ The reader who is not familiar with mechanics as formulatred by Hamilton can
convince himself that the equations dx/dr = 3H/0p., dp./dt = —0H/dx, and so on, are
equivalent to Newton's equations for H = p?/2u + V(r). The equations also hold for the
more complicated Hamilronian [p + eA(r)/c]*/24.
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with the help of the identicy
aX (b ¥ c)= b{a-c}) — cla-b) (13-47)

We take the z-component of this equation to obtain

ule X v), = L. + i'B x + )

that is,
eB
por = L, + — pt {13-48)
2c
The expression for the force on the electron
F=-‘vxB (13-49)
¢
yields the relation
v¢  evB
£ o= (13-50)
p ¢

fot circular motion. This relation, together with (13-48), after a litdle algebra,
yields,

' B
ot = =1, (13-51)
¥ ‘ Be :
and
2c L2
p = I:‘;g L;] (13-52)

We now return to the expression for the energy, (13-43). Because of the
smalloess of %, the energy can only be of macroscopic size for reasonzble B, if
(25, + 1 + |m| + m) is very large. We have two cases: {a) If m < 0, this
implies that n, is very latge. Now », determines the degree of the polynomial
L',;’",' {3). that is, the number of the zetos in the’ function,’® and if that is very
large, the function cannot be large for some small range of y where the classical
orbit would be located. (b) If m > 0, the coefficient is (2n.+ 1 4+ 2m), and
this can be large, with #, small, provided that m is large, The ENELEY NOW IS

;_ h2k* eB

o — 13-5
2p ' " (13-53)

% See Eq. 12-23, the development leading up 1o it, and the discussion on p. 200.
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in agreement with the classical tesult. Note that
L,=hm (13-54)

is positive, as expected.

We can also show that the radius of the orbit, as determined by the peaking
of the radial probability distribution, comresponds to the classical value, Let us
take 7, = 0. In that case L)™' (y) is just a constant, and the square of the wave
function is, according to {13-38),

P{x) = 17 =2 (13-55)
This has a maximum where "
__:_f = (@2|m|x™ T — 2Rl e = g
that is, at
x=Vm| (13-56)
which yields
2 i/2
p= (—é ﬁm) ) (13-57)

This problem is 2 beaurtiful illustration of the correspendence principle.

There are several interesting quantum mechanical effects connecred with
the interaction with a magnetic field that we now tuta to. The Schrédinger
equation (13-18) appears to violate the principle of gauge invariance, since it is
A(r,#) that appears in the equation, and under the cransformation

A—> A+ V) (13.58)
the Hamiltonian is changed according to

2
—l(iv +5A) ql(£v+fA+fvf)z (13-59)
2p ¢ ¢ [4

1 2u \ 7

It is possible to save gange invariance by using the fact that a change of the wave
function by a phase factor, which may depend on r, has no physiczl conse-
quences. Thus if we require that (13-58) mwst be accompanied by the trans-
formation '

) — N ) (13-60)
then the left hand side of eq. (13-18} becomes

1 & ¢ ¢ fi ¢ e in
;(TV+IA+;vf)v(’,v—l—:Afcvf)e v
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1 /h W F
= (—.v +iA+ fvf) : [a" (—.w. +iap v+ fi,vmp)]
e\ i ¢ 3 i ¢ ¢
’ tH
= —e”‘( v+ - A + - vf+ ﬁu) ] (13-61)
Thus with the choice
A=——Ff (13-62)
= » -62)
that is, with the transformation law
Vs) — =D gr ) (13-63)

gauge invariance is restoted.
In a field-free region, B = 0, which implies that

VXA=0 (13-64)
that is, A may be written as a gradient of a function
A=wf ‘ (13-65)

In a field-free region, we may therefore describe the motion of an electron in two
ways: either we do not consider the presence of a field ar all, and write

[l (i V)z + V(r)] V=K (13-66)
TR N

for the energy eigenfunction equation, or we write the equation with the vector
potential given by (13-63)

fi
21“( v+ - A) Y+Viny =g (13-67)
and take
W = eGnory (13-68)

The function f{r,5) may be wricten in terms of Afrs) by solving {13-65):
fr,p) = f dr“A(rl',t) © (13-69)

where the path of integratioe is taken from an arbiteary fixed point, for example,
the origin, ot infinity, to the point r. The integral only makes sense if B = 0,
that is, in a field-free region, since the difference in the integral along two dif-
ferent paths, labeled 1 and 2, is
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T
Fig. 13-2.  The inl:eg[alsf A(r7)-dr’ along path 1 and path 2 are generally not the
o

same, since the difference is equal to the magnetic flux @ enclosed by the closed loap.

[a‘r’-A(r‘,t) —[ dr'Alr'y) = fdr‘-A(r’,t)

=f v’xA(r’,z)-dS:[ B-4S =% (13-70)
8 J 8

where we have used Stokes' theorem, and where ® is the flux of magnetic field
through the surface spanned by the two paths (Fig. 13.2). Thus only if & = 0
will the phase facror in (13-68) be independent of the choice of path in the line
integral. Such an independence is required if we insist that the wave funcrion be
single-valued.

If the two paths include flux, then che wave functions of electrons traveling
along the two paths will acquire different phases. An interesting consequence
is that if an electron moves in a field-free region that is not simply connected,
but surrounds a ‘hole” containing flux @, then upon completing a circuit,
the electron acquires an additional phase factor e%:#™<, The requirement that
the electron wave function be single-valued, so that the phase factor is unity,
implies that the enclosed flax is quantized

2xhe
P = n =0 x1, £2,... (13-71)
4

Such a siruation arises in the motion of electrons in a superconducting
ring suttounding a region contaiming flux. The fitst experiments, done in 19618
were based on the following scheme: a ring, made of a superconductor, is

o B. 8. Deaver and W. Fairbank, Phyr. Rer, Letters, 7, 43 (1961); R. D&ll and M,
Nabauer, fbzd., 7, 51 (1961).




Interaction of Electtons with Electromagnetic Field 221

T< T,

Fig. 13-3. A superconductor at temperature T > T, (the critical temperature)
acts like any other meral, and magnetic flux lines can penetrace it. When the tem-
perature is lowered until T' < T,, the ring becomes superconducting, and expels
magnetic flux lines. Some of these become trapped inside the ring. It is the trapped
flux char is found 1o be quantized.

placed in an external magnetic field at a temperature above the aitical tem-
perature, so thac the metal is not superconducting. Since superconductors expel
magnetic field lines, except for a thin surface layer, B = 0 inside them. This is
the Messsner effect.” When the ring is cooled below the critical remperature, it
becomes superconducting, and magneric flux is trapped inside the ring (Fig.
13.3). An ingenious measurement of the flux shows that (13-71) holds, with the
modification that

2afi

T ”

This is consistent with our present understanding of the phenomenon of super-
conductivity, according ta which, “cotrelated states™ of paits of electrons (with
charge 2¢!) form the fundamental entities that one deals with in the supet-
conducror.
Another manifestation of the dependence of the phase of the wave func-
tion on the flux, can, in principle, be seen in an interference experiment (Fig.
* 13.4) in which a solenoid confining magneric flux is placed between the slits in a
Rtwo-sllit experiment. The intetference pattern at the screen is due to the super-
position of two parts of the wave function

=+ (13-73)

* 1 strongly recommend Chapeer 21 in the Feynman Lectares an Physicr, Vol. 111, for an
wexcellent discussion of these macroscopic manifesrations of quantum mechanics.

(13-72)
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Electron

source
Path 2

Screen

v

Fig. 13-4, Schematic sketch of experiment measuring shift of electron inter-
ference pattern by confined magnetic flux.

where 1 denotes the part of the wave Tunction that describes the electron follow-
ing path 1, and ¢, the part approptiate to path 2. In the presence of the solenoid
we have

Y=t gie/&cj'.d'r-d + s tic/uc_[, dr-A

= G IRy ) git/eldre A (13-74)

The flux chus causes a relative change in phase berween ¥a and ¥, and this will
change the interference pattern. This effect, first pointed out by Aharanov and
Bohm, has been. observed expetimentally.®

Problems
1. Show that with
2
H= r + F(r)
2p

the equations

dx  oH
7—310;,-“
dps oH
A o

S R. G. Chambers, Phys. Rev: Letters, 5, 3 (1960).
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yield the equations of motion

e __ov
e A9’

m

2, Show that the Hamiltonian

1 e
HZZE*T“W]

yields the Lotencz force equarion

2 2

“d:z

[Note. In your caleulation use

—di = —¢ [E(r,t) + ‘1? vX B(’:’)]

d DA | dr OA  dy DA . dr DA
A st T a s Tk E

since the fields thar enter into the equation of motion (and the Hamiltonian)
must be cvaluated at the position of the particle.]

3. Calculate the wavelengths of the three Zeeman lines in the 3D — 2P
transition in hydrogen, when the lateer is in a field of 10* gauss.

4. Consider an electron confined to 2 tegion between two cylinders of
mdil # and b respectively (5 > 4). (a) Separute the Schrédinger equation in
cylindrical coordinates (cf. Eq. 13-32), and show that the equation can be
solved in terms of Bessel functions. What are the conditions for the detetmina-
tion of the energy eigenvalues? (b) Discuss the degeneracy of the energy eigen-
functions? Whar is it due to? For Bessel functions, see note afcer problem 8
below.

3. In this problem we work out an example showing how an enclosed
magnetic flux changes the angular momentum of a particle in 2 region outside
the flux tube. Consider a magnetic field confined in a cylindrical region p < 4.
Let the flux be ®. In the region p > « there is no magnetic field, and hence the
vector potential is of the form ' '

' Alpf,z) = VA(pS2)
(a) The choice of gauge V-A = 0 implies thac
VA=0

. &
Show that a solution of this equation, sarisfying (13-70), is

1
A=-—30
2%
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(b) Calculate the angular momentum about the symmetry axis
(ur X v), =1L, = [rx (ﬁ_v + fA)}
i ¢ 2

in cylindrical coordinates, and show that for the above A it is given by
k2 e
T i o8 ¢ 2x
(c) Sclve the eigenvalue problem L. = M, and show that single-valued-
ness of the eigenfuncrions leads to flux quantization.
6. Show that for a system described by the Hamiltonian
_Tp + (/) Al
2p

H
the flux j, which satisfies
2 g +v-j=a
5 VY Jj=
is given by :
# 2i
i= [vz*w O (o A(r.:)wﬂ
2iu fic

Show also that the Hamiltonian equations of motion of Problem 1 imply that

d

—L=0
dr

whete
L=rX (HfA(u))

7. Consider the problem of a charged particle in an external magneric field
B = (0,0.8) with the gauge so chosen that A = (—¥B, 0, 0). What are the con-
stants of the motion? Go as far as you can in solving the equation of motion,
and obtain the energy spectrum. Can you explain why the same problem in the
gauges A = (—yB/2,xB/2, 0), A = (—3B, 0, 0), and A = (0, xB, 0) can stll
represent the same physical situation, even though the solutions look so dif-
ferent in all chree cases?

8. Consider a charged particle in a2 mignetic field B = (0,0,B) and in a
crossed electric fielld E = {E,0,0). Which of the three gauges menticned in
problem 7 would you use for this problem? Solve the eigenvalue problem.

Note. The sclution of the equation
&4 1 4 2
=y (1 - _'L) u =

=" z d= z2
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with # integral, are known as Bessel functions, for the regular solutions

Y& (/2
Jnla) = (?) g N+ D)

and Neumana functions for the irregular solutions

" @ ;. 11

LNEARS> i}i(m)
L (2) E il 2
. i 1 Hn 1
(logvy =035772..)  am= (E R ﬁ)
m . m

They have the asymptotic behavior

s~ (2 oo - - 1) [+ (2)]
i~ (2) o (o= 2= ) [ o)

A detailed discussion of their properties may be found in any beok on the
special functions of mathematical physics.
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The vatious aspects of electron motion in a magnetic field are very intetestingly
discussed in

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures onr Physies,
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chapter 14

Operators, Matrices, and Spin

A proper discussion of atoms is not possible without consideration of the
spin of the electron. In spite of the suggestive pame, this property of the electron
has no classical analog, and, as will soon become evident, it must be treated by
somewhar abstract methods. Fortunately we have some prepatation for this
further departure from a description closely tied to coordinate space, in that we
discussed both the hatmonic oscillator (Chapter 7) and the angulat momentumn
eigenvalue problem

L*Yi, = U4+ 1) Yo
LY, = ﬁmY;m (14-1)

by operator methods. For the harmonic oscillator we found states, defined by

Uy

1
(st (AN up (14-2)
for which

Hu, = fis(n + 1) a, 14-3)

and we could also calculate the action of the raising and lowering operatots on ,,

Ay = Vn+ 1) h gy {144}

’ and

. Avy = Vol g, _ {14.5)

We also showed that
o mlmd =0, (14-6)
& statement that can be made to held for the eigenstates of any hermitian
opetator (H hete). If we take the scalar product of (14-3) to (14-3) with =, we
find that .
' <ﬂm|H"n) = (”m!H[”ﬂ) = (” + %) ﬁ“’ 6"“‘



228 Quantum Physics
{tim| At} = lpa| Aan) = Vi + 1) B 8t
o] At = (| A2} = Vi 8 (14.7)
where we have introduced the more symmetric notation
(] 0u;y = 4| 0|25} (14-8)

These quantities may be arranged in arrays called matrices. The conventional
notation for a matrix M; has the fiest index labeling the row, and the second
labeling the column of the array. Thus if we convert the scalar product
{#n|H u,) into H,,, we find that

1/2 0 0 0
0 3/2 0 0
_ o 0 5/2 0
H=fe 0 0 0 7/2
(14-9)
Similarly
0 0 0 0
A1 o 0 0
L 0 42 o o
A= i 0 0 43 o
(14-10}
and
¢ 1 o 0
0 0 2 0
A=% 0 0 0 3
{14-11)

We shall call the array (#.,|F|u,), where F is any operaior, and the u; are any com-
Plete set, @ matrix vepresentation of Fin the basis provided by the u;. This appellation
needs some justification. The product of two matrices, for example, satisfies

(FG)is = 2, (F)nlGlas (14-12)

and we need to verify this relation for the “matrix representations” of the
opetatots Fand G. To do this, let us consider the state Gw;, and, using com-
pleteness, expand it in the form

Guj= ¥, Catin : (14-13)
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The coefficients C, are given by
D C= | Gl (14-14)
Hence

@i FGla;5 = (| F( Y Cain))

Z Cﬁ("i[Flﬂn)

20 sl Flane Y an| Gl ) (14-15)

which is the same as (14-12), provided we write
(#:|Flan) = Fiy (14-16)
and 50 on. It is a useful mnemonic device to write the unit opezator in the form

1= 2 lan )l (14-17)

and in that form it can be inserted between the two operators Fand G in the
matrix element (u:|FG|u;} to give (14-15).
Futther justification for the matrix connection comes from the relation

(| Bl )* = (Fitn|tm} = (1| Ftl 20} (14-18)

which shows that if the operator Fis represented by a matrix, then the hermitian
conjugate operator F' will be represented by the hermitian conjugate matrix,
since the lacter is defined by

(FDam = B, (14-19)

Note that in our discussion we made no reference to the fact that we
started out with eigenstates of the harmonic oscillator Hamiltonian, The ondy
thing that is special about them, is that they diagonalize the mairix representing H.
With another complece set, H would not be diagonal, and reading off its cigen-
values, that'is, the matrix elements when it is diagonal, would not be easy,

The ¥,,, were defined ta be states thar diagonalize L2and L, simultaneously.
If we stay with a fixed 2, thar is, with states in which only the m-value is variable,
then, with an abbreviated notation, the second of the relations (14-1) reads

k.
Yt | Lot} = b 8, (14-20)
Furthermore (10-40) with (10.52) implies that

(Lm’l&\ém) =M+ 1) — mlm + DI 6,4, (14-21)
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This leads o the matrix representations

1 0 0
L.=% 0 0 0 )
0 0 -1 {14-27)
0 V2 0
Ly=*% 0 0 V2 )
0 0 0 (14-23)
and
0 0 0
L.=#| 2 0 0
0 V2 0 (14-24)

for the / = 1 angular momentum operators. The rows and columns are labeled
with'm = 1,0,—1 in order left to right and top to bottom. It is easy to check
that the matrices satisfy the commutation relations. For example

042 0 0 00 0 00 OVE 0
[Ly, L] = &2 (o 0 \/5)(\5 00) — R (\/5 oo)(o 042
0 0 0420 0+v2Zo/\0o 0 0

0
200 000 10 0

=#*{0 2 0)— 7|0 2 0)=2R%0 0 ©O])=2RL. (14-25)
000 00 2 00 —1

Genetal relations between stares can also be written in matrix tepresenta-
tiots. Consider, for example, z relation like

¢ = Ab {(14-26)

If we take the scalar product of this with any member of 2 complete set us,
we have

sy = {wi| Ag) (14-27)

Furthermore, the insertion of the unit operator, in the form (14-17) between A
and ¢ yields

@iy = 322 el Al ) {anl &) (14-28)
If we write {4.|¢) as a column vector a,
| ) @
{ulp) as

wlor—| “l® |

{14-29)
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and similatly

Gul¥) B
{ua|¥) B2
O I
(14-30)
then the matrix representation of (14-26) is
Bi= 2 Ainea (14.31)

Thus matrices represent operators, and column VECToLs tepresent states. The

scalat product (¢|u,) = {#a | Y* is written cbnventionally in the form of 2 row
<¢i;“ﬂ>__> (d;, Q;, C!;, .. -} ’ (14‘32)
so that the scalar product (@), for example, can be written as

(¢Hf)= Z {¢i"‘n)(’fuw’)

= 3 a8, (14-33)

n

An eigenvalue equation is a special case of (14-26). It reads

A = a¢ (14-34)
and it reads
2. Asw, = a0 ' (14-33)
in mattix form. This is equivalent to
An — a Asa Az e 131
Am An — d Aza e [£ 4]
Az Asz Ay —a - o =0 (14-36)

and there will be 2 nontrivial solution of this equartion only if the determinant of
the matrix vanished '

det| Aiy — abi| = 0 (14-37)

"
This is 2 good way of finding eigenvalues (and eigenvecrors) for operarors
represented by finite martrices, but for infinite matrices this is unforranately
not so simple, ’

ot It is indeed fortunate that chere is 2n alternative to representing opetators o
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by functions and differentials, since not all operators can be represented in that
way. The simplest example is that corresponding ta the angular mementum
! = L Eq. (10-51) and {10-60) telt us chat

Yijz412 = CaV/sin 0 e (14-38)
- and (10-34) allows us to compute

Iy « cos f
— - ¢
1/2,1/2 m

This, however, is not proportional to Yz, —1/2, and furthermore it is singular at
8 = 0 and . Thus for [ = § there are troubles, and we must turn to matrix
representations; Instead of talking about / = %, we shall walk about spin, § = §,
teserving the Jetter / for the orbital angular momentum associated with r X p.
The spin operators are 5,, Sy, 2nd 5, and they are defined by their commutation
telations ’

—in/2  (14-39)

{5..5,] = s, (14-40)

and so on.
We wish to represent them by 2 x 2 matrices. (14-20) yields

1/2 o
S.=1% {14-41)
0 —1/2
and (14-21) gives
a 1 0 4]
5 =*rh S.=*% (14-42)
I 0o 0 1 0
We may write this rePre)semation as
S = ifid ' (14-43)
whese
0 1 0 — 1 Y
p = ay = o = ' (14-44)
1 o i 0 0 -1

are the Pauli matrices. They satisfy the commutation relations
[o2,0] = 240, ) (14-45)

and so on, as they must, to satisfy (14-40), and they also sauisfy

1 @
=0l =0}2= =1 (14-46)
0 1
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and
U0y = —d,0,
00 = —a.0,
Oyl = —a.0y {14-47)

which are relations peculiar to the spin % representations and do niot hold for
the / = 1 matrices, for example.

The eigenstates of S, will be represented by 2 twe component columa
vector, which we call spinor. To find these eigenspinors, we solve

u H
S, = +if (14-48)
v v
that is,
1 (1] u u
=+
4] QI v 4
or
P #
= 4+ 7
—7 v e

The plus ecigensolution has ¥ = 0, and the minus eigensolution has » = 0.
We thus write '

1 0
Xy = X = . (14-49)
] 1

w

for the eigenspinors cotresponding to spin up [, = +(1/2)#] and spin down
(5 = —(1/2)], respectively.
An atbitrary spinor can be expanded in this complete sec

oy 1 0
= ay| + a. (14-50)
! [ 0 1

“and the expansion postulate yields the interpreration that | |2 and |o_|?, when
propetly normalized, so that :

W et a2 =1 (14-51)

N
yield the probabilities that a measurement of % on the state (z ) yields
+(1/2) hand —(1/2) &, respectively,
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It is not necessary to keep S, diagonal. If we look for the eigenstates of the
opetator S; cos ¢ + 5, sin ¢, we must solve

u F3
(S: cos ¢ + 5, sin ¢) ( ) = §hir ( (14-52)
v v
] cos ¢ —isind u u
= A
cos ¢ 47 sin ¢ o J\»r v

thar is,

‘This implies that

ve ® = hu
weé® =z (14-53)
Hence
A= &1 (14-34)
The eigenvectors corresponding to A = +1and k= —1 are

g iel2 o2
L ' L 14-55)
V2 2 V2 _ Y ¢

respectively. It is intetesting to observe that if we change ¢ to & + 2x the solutions
change sign. This is characteristic of odd half-integer spin wave functions (fermion
states); although this does not violate quantum mechanics, since —1 is just a’
phase factor, it does mean that no classical mecroscopic wave packet can bc
constructed that has odd half-integral angular momentum.

Given an arbitrary state o, the expectauon value of 8 may be calculated.
We have

(@lSlay= T X (al)IS|7)jla)

. | * i
(24, a_) S
0o 1 oy
{8:) = (el al) 3 )
1 0 a_

ot, equivalently,

Thus
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= (e, a'_)( )= Wlata + o ay)
[- 4%
0 i oy
80 = oy, a) ,
i 4} a._
—i R
* * ﬁ *
= dh(al a_)( = — Z(ata_ —alay)
foy 2
* * o+
(&) = Hhilay, a2) = $iley|? — jai?)
' - (14-56)

Note that all of these are real, as expected fot hermitian operators,

We shall see later that the spin of an electron appears in the Hamilronian

for the hydrogen atom, for example, coupled to the orbital 2ngular momentum.
When an electron is localized at a crystal lattice site, for example, it is often
possible to treat the spin as the only degrec of freedom that the electron possesses.
The electron will have an intrinsic magnetic dipole moment by virtue of its
spin, 2nd that magnetic moment! is

M=--%g (14-57)
. 2mc

where g, the gyromagnetic ratio, is very close to 2,
g=2 (1 + zi + ... ) = 2.0023192 (14-58)
T

and 7 is the electron mass,
For such a localized electron, the Hamiltonian in the presence of an external
magnetic field B is just the potential energy

H=—M-B=Ta-B (14-59)

. The Schtddinger equation for the state ${) = [a"'(t} is
o (),

LA “classical” electron moving in a circle with angular momentum L will form a
current loop whese magnetic moment is M = —eL/2mc. Since the spin is a purely quantum-
mechanical variable, one can argue (14-57) only by analogy. For its justification cne needs
the relativistic Dirac equation from which the value g = 2 also emerges. The cotrections to
£ = 2 come from quantum electrodynamics. The nontlassical aspects of spin were poinred
out by its discoverets, S. Goudsmit and G. Uhlenbeck (1925).
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LA egh
:ﬁTr = i 6 - Byl (14-60)

If B is taken to define the z-axis, and if we write

a—r—(") . oy
¥ = = (14-61)
- a_(D [
then the equation becomes
a; \. 1 ¢ a
o dmé o —i a_

The solutions correspond to different frequencies w. We have, for w = egB/4me,

(:+) = ({1)), and for w = —{egB/4mc), (::) = (;}) Thus, if the initial state is
-4

¥(0) = (14-63)
&

then the state at a later rime will be

{2 geB
) = e W= (14-64)

Suppose that ar r = 0 the spin is an eigenstate of 5, with eigenvalue 4-(1/2) £,
that is, it "points in the x-ditection.” This means that

0 1 a a
3 =4
1 b
har 1 ¢ ! 1
thar 1s, , = % . Then, at a later time
< = 1% :'uz ‘Kd) ! Al_ e_iu’
( x) - 5 \/5 . 0 ,\/5 efmt

e.'m!
= Z (e, e ( ) = g cos 2wt (14-65)
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N DV B AR e
(Sv>=§ﬁ$(f )€ _)(i . )V_/-i(emx )

('—I eZimt + i e-Zimt)

Similarly

sin 2o {14-66)

LS S

Thus the spin ptecesses about the z-axis, the direction of B, with frequency

o= BB (14-67)
2me n

In a solid the gyromagnetic factor g of 2n electron is affected by the nature
of the forces acting in the solid. A knowledge of g provides very useful con-
straints on what these forces could be, and it is therefore imporrant to be able to
measure g, This can be done by the paramagnetic resonance method, which we now
desctibe.

Consider an electron, whose only degtees of freedom are the spin states,
under the influence of a large magnetic field B, pointing in the z-direction, 2nd
constant in time, and 2 small oscillating field B, cos w?, pointing in the x-ditec-
tion. The Schrodinger equation now reads

ali) A B, B, cos w! (1)
i 7‘{ ] = % ( (14-68)
1 b \Bicoswt —Bq b(5)
or, with
- B B
o= Ame o= 4mic (14-69)
i%g = woa(t) + w1 cos wf b(2)
db
2"?(:2 = w COS w? d(t) - wub(f) (14-70)
-Let

A = a(d) &
. Blt) = B o™ 14-71)
These satisfy.t'h'e équations

 dA()

= @ cos wt B{f) &
dr
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. %wl ei(Zwu—u)t B(!)

. @B(%)
! dr

—Ziwl

w COs wt At) ¢

e Lan e 7T 4 (14-72)

In obraining these, we made an approximation. We wrote

cos wt (254:06 — % {ei(Zwo-l-u)l + ei(an—u}!]

% ei(Zmn —w}f

"Since we will be interested in values of w = 2w, and since both are large, the rerm
that has been dropped oscillates very rapidly, and we may expect that its con-
ttibution averages to zeto, A more detailed treatment supports this observation.
We may eliminate B(1):

21 dA(t) JR Y

B() = 14-
) =2 A (1473)
and use this to obtain a second otder differential equal:ion for A(f):
LA . dA@W
T (20 — w) —— % + A(:) 0 (14-74)
A trial solurtion is
Alr) = A(0) e ‘ (14-75)
When this is inserted into (14-74), the roots of the equation
. 2z
—N 4 (2wo—m)>\+‘_";— =0
that is,
200 — @ V 2w — w)? !
_ 2l —w (2wp — w)® + (14.76)
2
determine A,
The most general solution is
AR = A, M4 A > (14-77)
and hence
7 .
B(I) - _ = e-r(Zwo—m)! (MA+ ei)\.t + aA_ er‘)u') (14-78)
s

This finally yields
a(l} - e-im? (A+ ell_.l + A ei?\_t)

Bi) = — —— e 0 A, P A P (14.79)
n
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If at # = 0 the electron spin points in the positive z-direction, then #(0) = 1 and
5(0) = 0, that is, :

A+ A4 =1
MAdr Frad =0

so that
A.,.——):"—
_k——M
N

A = — ;Cm;—k,, (14-80)

The probability that at some later time # the spin points in the negative z-direction
is |6()]%:

2

.Y SR v S
= N Tion”

2

oy z

= (2000 - w)’ + wﬂ
ay? 1 —cos V(2w — w)?+ v s
T (2we — w)? + ar? 2

This quantity is small, since a1 < @, wp. When the frequency of the field B, is
“tuned” to match 2, then the probability becomes

1 — gty

{14-81)

|62 — T cosent Zos it (14-82)

that is, it approaches unity. Since the energy of the “up” state is different from
that of the “down’' state, such an energy difference, absorbed from the exrernal
field, signals the resonance frequency, so that we, and hence g can be measured
with grear precision,

Problems

1. If the ground state vector for the harmonic oscillator is given by
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use {14-2) and (14-10) to calculate #, #1, #3. Whar is the general pattern?
Satisfy yourself thar

Wnlttn ) = Smn

X 2. Given a vector

—
O e B R

calculate with the harmonic oscillator operators (14-9), (14-10), {14-11) the
quﬂ.ﬂtlthS *

(2) (H).
(b} ), {xy, (%), (p)-
{c) Use this to calculare Ap Ax.
[Note. The expression fot p and x in terms of A and A* are to be found in (7-4).]
3. Calculate the top left 4 x 4 comer of the matrix representation of x* for
the harmonic oscillatar,

4. Use (14-20) and (14-21) to calculate the matrix representation of L.,
L,, and L, fot angular momentum 3/2, Check that the commutation relations

(Ley Ly = iR L.
and so on are satished.

5. You are given the Hamiltonian

He  Lit o LAt L s
2[1 + + 25
Y
Find the eigenvalues of & (a) when the angular momentum of the system is 1;
(b} when the angular momentum of the system is 2.

{Note. The matrix reptesentations of L., Ly, L. for angular momentum 2 are
abtainable fsom

&

I

™
coooN
[ R
oo o oo
(=Rl = I = ]
S I = R o B B o

.
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Ly=#

o oo

0 0

0 o

V6o Lo = (L
2
0

o

8 4 6
H=] 4 14 4
6 4 8

What are the eigenvectors?

7. Consider an angular momentum 1 system, represented by the state
vector

1
4

1
T V6 5

What is the probability that & measurement of L, yields the value ¢?

8. Consider a system of angular momentum 1: What ate the eigenfunc-
tions and eigenvalues of the operator L.k, + L,L.?

9. Consider a system of spin 1/2, What are the eigenvalues and eigen-
vectors of the operator §, + §,.2 Suppose a measurement of this operator is
made, and the system is found to be in the state coresponding to the larger
cigenvalue, What is the probability that a measurement of S, yields #/2?

- 10. The equation for the rate of change of an operaror in the Heisenberg
picture is given by Eq. (7-47). Consider the operators S.{#), . . . What are the
equations of motion of these operators, if the Hamiltonian is given by

H=-8g3.B
2mec

and the commutation relations ate [S.(2), 5,{n] = i#S.(¢), and 50 on. IfB =
(0,0,B), solve for 8(2) in terms of S(0).

11. A spin 1/2 object is in an eigenstate of S, with eigenvalue -+#/2 at
time # = 0. At that time it is placed in a magnetic feld B = {0,0,B) in which it is
allowed to precess for a time T. At that instant the magnetic field is very rapidiy
rotzted in the y-direction, so thar its components are (0,B,0). Afrer another time
interval T’ a measurement of S, is carried out. What is the probability that the
value /2 will be found?

v
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12. Work out the behavior of a spin 1 particle in an external magnetic
field. Choose B = (0,0,B) and take the initial state to be an eigenstate of

Sn=_5snb8cos¢d+ §,sindsing + 5 cosd

with eigenvalues %, 0, —# in succession.
[Hint. Use the matrix reptesentations given by (14-22) to (14-24).]

References

The matetial on spin is standard, and discussions may be found in all of the
books listed at the end of this volume,




chapter 15§

| The Addition of
Angular Momenta

Suppose we have two electrons, whose spins are described by the operators
8, and Sy. Each of these sets of operatots satisfies the standard angular momen.
tum commutation relations

{Sir, 51,] = #iSy
and so on,
[S2e, 2] = hiSe, {15-1)

and so on, but the two sets of operators commure with each other, since the
degrees of freedom associated with different particles are independent, that is,

[51, 8] = 0 (15-2)
Let us now define the total spin $ by
5=8+8, (15-3)

The commutation relations obeyed by the components of § are
[SnSy] = [Slx + 2., Sly =+ Sm,-]

= {Slzwslv] + [Sﬂx-sﬂv]
(S + Su) = S, (15-4)

i

and so on. We are therefore justified in calling S the totl spin. We may now
determine the eigenvalues and eigenfunctions of 8% and §,.

The two-spin system actually has four states. If we denote the spinor of

the first elecrron by x, so that

S = 3G + 1) A
Sx = L3P {15.5)
243
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and similarly for the spinor x'Z of the second electron, then the four states are

1 2 _ (2 1y (2 1 2
x( )x“ x(+x (-’x+), x‘)x(,’ (15-6)

The eigenvalues of S; for the four states are

(Slz + SZ:) x (2)
(S ‘XU)) x(Z) (1] (shxa)

(1} (2)

Sxi

that i3,
Szx(.}-)xm = fiy'H (1) u)
Sx(]) 2 Sx(l) (2) =0
Sy ® = ﬁxm 2 ’ (15-7)

There are two states with m-value 0. One might expect that cne linear combina-
tion of them will form an § = 1 state, to form a wipler with the m = 1 and
m = —1 stares, and the orthogoenal combination will form a singlet § = 0 state.
To check this expectation, et us construct the Jowering opetator

=5 +35 (15-8}

and apply this to the m = 1 state. This should give us the m = 0 state that
belongs to the § = 1 triplet, aside from a coefficient in front. Indeed, using the
face that

SO = i . 059
which can be established by noting that

0 1 0 —i 1 0
i - i =% (15-10)

we get

1 2!
SxPx?

1 2
) xF + xS a

— (1) (2) + ﬁx(ll 2

(l} (2 + x(l) 2)

‘\/Eﬁ ——T—— {15-11)

The linear combination has been normalized, and the compensaring factor in
front, /2%, agrees with what one would expect from (10-36) and {10-48) with
{ = m = 1. If we now apply S 1o this linear combination, and note that

5@ _ g (15-12)
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we get
(1) (2) + x (I) (2)

V2

f
s X = -;-/—i(x(l)xg) + xUx®)

= \/_ﬁxtl) (2) (15_13)

as we should, for an angular momentum state § =
The remaining state, constructed to be orthogonal o {15-11) and properly
normalized, is

1
75 P = O (15-14)

and because it has no partners, we conjecture that it is an § = 0 state, In order to
check this, we compute 82 for the two states

X, = 7 Px? + (ﬂ) «®) (15-1%)

We have

8§ = (81 + 8;)* = 8 + 8§,* + 288,
= 8 + 8 + 25,5 + S5 + 55y (15-16)

First of all,

Slexfi = ;/____ ()c(Z.‘PS1 x(l) 2)s] x(l))

= §fD, (15-17)
and similarly
S.2X, = X, {15-18)
Next, we calculate
' 25uSuXy = 2R (—35) X, = — X, (15-19)

Finauy‘%
(SuSe- + 51-52) Xy = «f S Sa® + S xPSux®

i =+ Sl+x(-}52—x(2) =+ Si- xm-?z-»x(z))
which, with the help of (15-9) and (15-12) yields
) ' (5145 -+ 5:-5) Xo = tﬁ.’Xi {15-20)
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Thus
$X, =BG +HI-j+x )X = RXy

=RmS5+ 1) X, (15-21)

with § = 1 and 0 cortesponding to the & states.

What we have shown is that the totality of the four states of two spin 1/2
particles may be recombined into a tripler and into a singlet total spin state,
For free spins, the two descriptions are completely equivalent. If, however, we
have a physicai system in which the forces depend on the spin, the eigenfunc-
tions of the individual spins ate no longer simultanecus cigenfunctions of Hand,
say, 8.% Si, 847, Sz, but chey may be simultaneous eigenfuncrions of H, 82, §,,
84, and S:* This is most easily seen in 2n example,

If we have a potential between two electtons that depends on the spin,
5o that

Viry = Vi(r) + Sl <8, Va(r) (15-22)

we can €asily see that $;, and $5. do not commute with the second term, so that
the eigenstates of H containing this potential cannot just be simple products of
eigenstates of §y; and Su.. If we observe, however, that

818, = }(S* — 82 — 8, {15-23)

so that this term can be replaced by the eigenvalue, when acting on an eigen-
function of 82, 8,2, and S22, then

ViR = Viln) + % Valr) [3(3 +1) - ﬂ

- Vi +1 ( _; ) Vilr) {;:; (15.24)

Such 2 spin-dependent potential is actually observed in the neutron-proren
system. The bound state is an § = 1 state—this is the deuteron—but there is also
an unbound § =0 srate, which is only possible if Fafr) # 0.

Much mote important for future applications is the combination of a spin
with an orbital angular momencum. Since L depends on spatial coordinates and
S does not, they commute

(LS} =0 (15-25)
It is therefore evident that the components of the total angular momentum J,

defined by
J=L+ 8 (15-26)
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will satisfy the angular momentum commutation relations, We can now ask for
linear combinations of the Y, and x4 that form eigenstates of

=L+ X% (15-27)
and
J2 = (L* 4 2L-S8 + 8%
=L24 8+ 205, + L.S_+ LS, {15-28)

Let us consider the linear combination

$imt1/z = €YV nXs + BY1mprx- (15-29)

It is, by construction, an eigenfunction of J, with eigenvalue {m + 3} . We now
determine o and 8 such that it is also an eigenfunction of J*. We shall make use
of the fact that

LiYeu=[U+ 1) — mlm+ )" EYpa
= [+ m+ 10— m)ERY, 0
LYp=[—m+ 1D+ =) 28Y
Sexy = Sx- =0 Sixr = fixy {15-30)
Then
Iwsrip=al U+ 1) Yy + 1Y imxe + 2m(3) Yemx-
+ W —m+m+ DI Y ppax-} -+ BB+ 1) Yimpx-
+ §Yinnx- + 2(m + (=5 YVimpix-
T+ [~ w4+ m 4+ DI Yiux, | {15-31)
This will be of the form |
B+ D) dmire = B + ){aYimxs + BYipix)  (15-32)
provided that
el + D)+ 34+ ml+ 80— m+m+ 1)) =i+ 1) a
B+ D+ i—m— U Ftal-—ml+mt ]2 =4i+1)8
(15-33)
This requires that
—mlt+m+1)={;jG+1)~W+1)-%
XEGHU—+1)—§+m+1]

—
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which evidently has two soluticns,

—I—1
-+ -3= l (15-34)
!
that is,
I-3
i= {15-35)
I+4

Forj = !4 1/2, we get, after a little algebra

ddm+1 I—m
“—\/W "-\/y+1 (1326

{Actually we just get the tatio; these are already notmalized forms). Thus

I+ m+1 l—m
¥itisamt1/2 -_-\/WY&»M + \/?—1 Yimaix- (15-37)

We can guess that the = / — 1/2 solution must have the form

I—m I+m+1
Vi 1amtise =\/ Yimx+ — ‘/“—“ Yimt1x— (15-38)

2141 2+

m order to be orthogonal to the j = / + 1/2 solution.

These two examples illustrate the general features that are involved in the
addition of angular momenta: If we have the eigenstaces Yo, of Lyi?and L., and
the eigenstates Y5, of Ly? and La., then we can form (2h + 1) (21 + 1) product
wave functions :

“h<m=<h
Vi Yia, (15-39)
—him< b
These may be classified by the eigenvalue of
Jo= L+ Ly {15-40)

which is m\ + m, and which ranges from a maximum value of 4 +  down o
~1 — fp. Asin the simple cases discussed zbove, different linear combinations of
functions with the same » value will belong to different values of 7. In the 1able
below we list the possible combinations for the special example of 4 = 4,
I, = 2. We shall use the simple abbreviation (#,,m,) for Yi4, Y2
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m-value i, #; combinations number
6 (4,2) 1
5 (4.1) (3,2) 2
4 {4,0) (3,1) (2,2} 3
3 {4,—1) (3,0) (2,1) (1,2 4
2 {4,—2) (3,—1) (2,0) (1,1) (0,2) 5
1 {3,—2) (2,—1) {(1,0) (0,1} {—1,2} 5
(1] (2,—2) {1,—1) (0,0) (—1,1) (—2,2) 5
-1 (1,—2) {0,—1) (—1,0) (—2,1) (—3,2) p]
-2 (0,—2) (—1,~1) (—2,0) (—3,1) (—4,2) 5
-3 {(—1,—2) (—2,—1) (=3,0) (—4,1) 4
—4 (—2,—2} (—3,—-1) {(—4,0) 3
-5 {(—3,—2} (—4,—1) 2
-6 (—4,—-2) 1

There are a total of 45 combinations, consistent with {2/, 4 1) {24 + 1).
The highest state has total angular momentum & + /4 as can easily be
checked by applying J2 to Y{JY{2:

PYRYE = L+ L + 2LuLy, + LuLs 4 Li_Lyy) YYD
= LU+ 1) + Bl + 1) + 200 YY)

= e+ B+ &+ 1) YRIYE, (15-41)
This is j = & in the example discussed in the table. Successive applications of
Jo=Li_+ Ly (15-42)

will pick out gne linear combination from each row in the table. These will form
the 13 states that belong to § = 6. When this is done, there remains a single state
with m = 5, two with m = 4, ..., one with m = —35. [t is extremely plausible,
and can, in fact, be checked, that the m = 5 state belongs to j = 5. Again
successive applications of J_ pick out another linear combination from each row
in the table, forming 11 states that belong to 7 = 5. Repetition of this pro-
cedure shows that we ger, after this, sets that belong to 7 = 4,7 = 3, and finally
7 = 2. The multiplicities add up to 45:

13+ 114+94+745=45

We shall not work out the detils of this decomposition, as it is beyona
the scope of this bock. We merely state the results.

(a) The products Y/, Y3, can be decomposed into eigenstates of J2,
with eigenvalues #(f -+ 1) 22, where ; can take on the values

i=ht b+ h— 1.4 — b {15-43)
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(b} It is possible to generalize (15-37) and (15-38) to give the Clebsch-
Gordan series

Z C(]m llmllgmg) j(llﬂj, }22 (15-44)

The coefficients Glfm; Jumianz) are known as Wigner coefficients, and have been
tabulated for many values of the arguments. We shall use only the coefficients
for fy = 1/2, which we have calculated explicitly.

We can verify that the multiplicities check in (15-43): if we sum the
number of states we get (f > k)

Ht RN+ 2OYE—-10DF 104+ 20~ H)+1]

2

= Z [2([1—12+”)+1]
n==[)

=L+ 12h+ 1) (15-45)

A final comment is in order. We noted, when discussing identical particles,
that a system of two electrons (or more genetally, two fermions) must be in a
state that is antisymmetric under the interchange of the two particles. This
interchange involves not only the exchange of the spatial coordinates, but also
of the spin labels. For a system of two identical spin 1/2 particles, the § = 1
wtiplet of states

1
x( )X(Z)

()] (2) + x 0 (2)} (15-46}

(x
\/_ m @

is symmettic under spin label interchange, while the § = ¢ (singlet)
7 Fx® = X9 (15-47)

is antisymmetric. Thus for a triplet state, the spatial wave function must be anti-
symmetric, and for a singlet state, it must be symmetric. The spatial wave
function of 2 two-particle system in their center of mass system is of the general
form

#(r) = Runl(r) Yia(0g) (15-48)
An interchange of the coordinares of the two particles is equivalent to the change

r—r
t—x—0

p—é+ (15-49)
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‘Thus the radial function remains unchanged. However under this transformation

Yim(0,$) = Yiulr — 0,0 + 7)
= (1} Y00} (15-50)

Thus triplet states must have odd orbital angular momentum /, and singler states
must have even orbital angular momentum, We shall see an application of this
when we discuss the states of helium.

An interesting application of these remarks occurs in elementary particle
physics. One of the first highly unstable elementary particles to be discovered
was the » meson predicted by Yukawa. This particle, which plays an important
tole in nuclear forces, comes in three charge states «%, 7% =~ It was found to
have spin 0, and the question arose whether the wave function of a pion—as this
meson came to be called—was even or odd under reflection, assuming that the
known particles, the proron and the neutron, had positive intrinsic parity. The
following expetiment was suggested.

Consider the capture of a #~ by a deuteron. A slow pion in liquid deuterium
loses energy by a variety of mechanisms, till it finally ends up in the lowest Bohr
otbit about the {pn} nucleus, and is then captured through the action of the
nuclear forces. In the nuclear reaction

m~t+dont+nw

the angular momentum is 1; the pion has zero spin, the orbital angular momen-
tum is zero in the lowest Bohr state, so that the only contribution is the angular
momentum of the deuteron, which is 1. The two neutrons must therefore be in
an angular momentum 1 state. If the total spin of the two neutrons is 0, then the
otbital angular momentum must be 1. If the total spin of the two-neutron state
is 1, then orbital angular momentum 0, 1, and 2 is possible, since adding two
angular momenta of one unit each can yield 0, 1, and 2, and adding one unit to
two units of angular momentum can yield 3, 2, and 1. However a singlet stare
of two identica] fermions must have even angular momentum, and is thus ex-
cluded. A wripler state must have odd orbital angular momentum, and this is
possible if the orbital angular momentum is 1. Such a state, however, has odd
pazity by (15-50), and hence the pion must have odd parity. In terms of the
spectroscopic notation, which we shall use, where a srate is labeled according to

2S+1LJ (15_51)
the two neutron states, from the total class of states 15, 'Py, 'D;, 'F,, .. ., 3%,
3Py, 2P, 3Py, Dy, 2Dy, Dy, °Fy, 3F;, *Fs, . . ., are restricted to 15, WDy, .. ., 3Py, 1.0,
Fy,32 ... by the Fermi-Dirac statistics argument, and of these there is only

. one state, the 3P, state, that has angular momentum 1.
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Problems

1. Work out the generalization of (15-37) and (15-38) to the addition of
orbital angular momentum L to spin 1.

(2} Find the eigenstates of $? and §, ,where

1 0 0
=% 0 o G
¢ 0 -1

(b) If these eigenstates are labeled &1, £, and £, find the action of §,
and §_ on these states.

{c) Calculate the effect of
=148 4205+ LS.+ LS,
on combinations like
Yimir = @Yk + BYppprdo + ¥Y miob
{d) Determine the relations between «, 8, and  obmained from
I =R G+ 1) ¥,

2. Find the analog of (13-46) for two spin 1 particles, which can combine
to form spin 2, 1, und 0 states. Use the notation £y, £9, £, for the one-particle
spin vectors.

3. A deuteron has spin 1. What are the possible spin and total angular
momentum states of two deuterons in an arbitrary angular momentum state L?
Do not forger the Pauli principle.

4. A particle of spin 1 moves in a central potential of the form
Vir) = Vilr) + S-L¥a(r} + (S-L)2Vs(»)
What are the values of V(r) in the states = L + 1, L,and L — 1?

5. Consider the discussion of the determination of the parity of the »—.
Suppose the =~ had spin 1, but was still captured in an L = 0 orbirtal state in the
reaction '

4 do 2
What are the possible two-neutron states? Which states are allowed if the x— had
negative parity?

6. Suppose the 7~ has spin 0 and negative parity, but is captuted in the
reaction

"+ d— 2

from the P orbit. Show that the two neutrons must be in a singlet state.
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7. The Hamiltonian of a spin system is given by

BS,-8; | C(S. + 5»)
= A
H + 7 + %
Find the eigenvalues and eigenfunctions of the system of two particles, (a) when
both particles have spin 1/2; {b) when one of the particles has spin 1/2 and the
other has spin 1. Assume in (a) that the two patticles are identical.

8. Consider two spin 1/2 particles, whose spins are described by the
Pauli operators 6, andd;. Let & be the unit vector connecting the two particles
and define the operator

S12 = 3(61-&)(8s-8) — 616y
Show that if the two particles are in a § = 0 srate (singlet) then
S1eXingler = 0
Show that fora triplet state
($12 — 2)(S12 + 4) Xripter = 0

References

The matenial discussed here is also discussed in one way or ancthet in every
texthbook on quantum mechanics. Many details can be found in

M. E. Rose, Elementary Theory of Anguiar Momentum, John Wiley and Sons, Inc.,
1957. :






chapter 16

Time Independent
Perturbation Theory

There are few potentials ¥(r) for which the Schrodinger equation is
exactly solvable, and we have already discussed most of them. We must therefore
develop approximation techniques to obtain the eigenvalues and eigenfunctions
for potentials that do not lead to exactly soluble equations. In this chapter we
discuss perturbation theory. We assume that we have found the eigenvalues and
the complete set of eigenfunctions for 3 Hamiltonian Hy,

. Hugn = E, {16-1)
and we ask for the cigenvalues and eigenfunctions for the Hamiltonian
H = Hy+ M, (16-2)
that is, for the solutions of .
(Ho + M) Yo = Enibn (16-3)

We will express the desired quantities as power series in A. The question of con-
vergence of the series will not be discussed. Frequently one can show that the
series cannot be convergent, and yet the first few terms, when A is small, do
properly describe the physical system. We will assume that as A — 0, E, — E,¢
and f, — @, _ )

Since the ¢; form a complete ser, we may expand ¢, in 2 series involving
all the ¢;. We write

¥ = N(A) [¢n + ; Car(A) ¢k} (16-4)

The factor N{\) is there to allow us to normalize the ¥n. We have the freedom to
choose the phase of ., and we choose it such that the coefficient of ¢, in the
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expansion is real and positive. Since we require that y, — ¢, as A — 0, we have

N(@) = 1
Ca{0) = 0 (16-5)
More penerally, we have
Culh) = NC + NC + ... (16-6)
and '
B, = E® A+ MEYV 4+ MED . C(16:7)

The Schrédinger equation then reads

(Hs + \H) [% + ;: Ao + E MCD¢, + .. }

= (B + ME® + MEW 4 ) [m + ; ACDes + g MCDdy + }
(16-8}

Note that the normalization factor N(A) does not appear in this lineat equation.
Identifying powers of X yields a series of equations. The first one is

an‘;. Cho + Hig = E,f'g P + EP, (16-9)

USlng Hypy = Ei%y we obtain
E¢y = Hy + ; (By® — B9 W (16-10)
o

If we now take a scalar product with ¢,, 2nd use the orthonormality condition
eld) = du (16-11)
we obtain .

M = (ga| M| 6n) (16-12)

» This is a very important formula. It states that the firsc order energy shift fora given
state is just the expectation value of the perturbing potential in that state, If the
change in the potential is of e definite sign, then the coergy shift will have the
same sign. The explicit form of

A = fdsr o(r) WH(r) én(r) (16-13)

shows that for the shift to be significanr, both the potential change and the
probability density |¢.(r)|* must be large.
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If we take the scalar product of (16-10) with b, fOr m 7 5, then
@n|Hijon) + (Bn® — B8 C) = 0
that is,

<¢E|AH1|¢n}

y _
ANy = ES _ o

7 (16-14)
The pumerator is the matrix element of H, in the basis of states in which H, is

diagonal. This formula is used in the next equation, which comes from the
identification of terms proportional to A:

a H W,
H.,E CRn + ’?;, Chor
=ELY C§ ER Y ¢l E® 16-15
g_ Debs, + ?_;2 W + EDg, (16-15)

Taking the scalar product with ¢, yields

@ _ W _ (@a| | ¢ ) {de| Ha|a)
Ey EH {a| Hijr) CIY E! Ed— B0

| (@] Hi|@a)i?

-1
n Enu - Eku (16 6)
The last line follows from the hermiticity of Hy:

(e Hiloe) = {¢s| Hy|oa)* (16-17)

This, 100, is a vety important formula, especially since the first order shift fre-
quently vanishes on grounds of symmetry. We may interpret the formula as
follows: the second order energy shift is the sum of terms, whose strength is
given by the square of the matrix element connecting the given state ¢, to all
other states by the pertutbing potential, weighted by the reciprocal of the
energy difference berween the states. We can draw several conclusions from the
formula,

(a) If ¢y is the ground state, that is, the state of lowest energy, then the
denominator in che sum is always negative, and hence (L6-16) is always negative.

(b) All other things being equal, that is, if all the matrix elements of H,y

]

P

are of roughly the same order of magnitude (which is the kind of guess one -

weuld make without more specific knowledge), then nearby levels have a bigger
effect on the second order energy shift than distant ones have,

(c) If an important level "'&”"—important in the sense of lying nearby, or
of {¢:| H| ¢ ) being large—lies above the given level "n,” then the second order
shift is downwards; if it lies below, the shift is upward. We speak of this as a
tendency of levels to tepel each other.

' An expression for C;3! may be obrained from (16-15) by taking the scalar
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product with ¢, # 7 #, but we shall nor require this formula, Also N()\) can be
determined from

Walha) = N?(A) {1 + v}z |Gz + .. !
¥n
=1 {16-18)
It is therefore 1 to first order in A. Hence, to first order in A, we may write

¢k hHli‘ﬁn)
¥ = ¢ + ‘;' (IT..“’W“ (16-19)
a formula that is sometimes useful.

The above development peeds modification when there is degeneracy,
since, on the face of it, the denominator involving energy differences could
vanish, The difficulty is associated with the fact chat, instead of a unique ¢,
thete is a finite set of ¢, all of which have the same energy E,°. This set can be
made orthonotmal with respect to the label *i,” because, as we have seen in
Chapter 4 this label can be associated with the eigenvalues of some other,
simultaneously commuting, hermitizn operators. We thus choose the set of ¢

such that
1Py = S onni (16-20)

The natural way to take the degeneracy into account is to teplace (16-4)
by an expression that involves linear combinations of the degenerate eigen-
functions of Hy:

¥ = NV { 2ot +2 3 R sl + . } (16:2)

The coefficients a;, B, . . . will have to be determined. When the above is sub-
stituted into the Schrédinger equation (16-3), we get, to fitst order in A,

Hq g; cR ;‘, Bt + HL Y, apl

=E Y a) + EL Y, X 8o (1622)
[ kn i
Taking the scalar product with ¢ gives the first order shift equation

2 a@? M9y = AEN o (16-23)

This is a finite-dimensional cigenvalue problem. For example, if there is a two-
fold degeneracy, and if we use the notation

@ Hiol) = ki ‘ {16-24)
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this equation reads
oy + hason = EV oy
hearay + hmes = B oy (16-25)

Both the cigenvalues—there will, in general, be two possible vatues of EV—and
the ar;, can be determined from this equation, if we add the condition that
>oalt=1 (16-26)
1
We do not bgther with the determination of the g, since we shall only use
degenerate perturbation theoty for the first order energy eigenvalues in cur
applications. If it so happens that h,; = 0 for § # j, that is, that the macrix Ag; is
diagonal, then the first order shifts are just che diagonal elements of this matrix.
This will happen when the pertutbation H, commutes with the operatot whose
eigenvalues the "7 labels tepresent. For example, in the hydrogen atom, there is
a degeneracy associated with the eigenvalues of I, that is, all m-values have the
same enetgy. If it happens that

[H, L] =0 {16-27)

and if we choose our ¢ to be eigenfunctions of L,, then k;; will be diagenal.
To see this, note that with

L = FimP (16-28)
@ (L L]1#0) = GP|HiL — Lanj4)
= " — oM ky;

0 (16-29}

that is, {16-27) implies
hij =0 for m = P {16-30)

Some of these features will be illustrated in the example below; others will
appear Jater in our discussion of the real hydrogen atom.

To illustrate the application of perturbation theory to a real problem, we
will consider the effect of an external electric field on the eneigy levels of a
hydrogenlike atom. This is the Siark Effect. The unperturbed hamiltonian is

2 Ze?
Hy=F _ % (16-31)
2n r
whose eigenfunctions we denote by $ura(r). The perturbing potencia) is
AH, =287 = ¢82 (16-32)

" where & is the electric field. The quantity ¢& will Pplay the role of the parameter A,
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The energy shift of the ground state, which is nondegenerate, is given by the
expression

Ep=e E{droo| 7| droe) = ¢ Sfd“rlttnm(r):? z (16-33)

This integral vanishes, since the square of the wave function is always an even
function under parity, and the perturhing potential is an odd function under
reflections. Thus for the ground state thete is no energy shift that is linear in the
electric field &. Classically, a system that has an electric dipole moment d, will
experience an energy shift of magnitude —d-&. Thus the atom, in its ground
state, has no permanent dipole moment. The argument given above may be
generalized: sytems in nendegeneraie states cannct have permanent dipole moments.
The statement of nondegeneracy is important: it is only then that the states are
also eigenstates of the parity operator, and then |¢(x)|? is even, and the expecta-
tion value of z vanishes.

Many molecules do have permanent dipole moments, and it is often said
that this is because the ground states are degenerate. The expecration value of z
in a state like e, + Sy, where the subscripts indicate the parity, certainly does
not vanish, and a state like the above will be degenerate with its space-inverted
stare o, — By if the two states ¥, _ have the same energy. This explanation
is mot quite correct. The reason is that the lowest-lying states are never quite
degenerate. Consider, for example, 2 molecule like ammonia, NH;. Its structure
is tetrahedral, with the three H nudlei forming an equilateral wiangle. The N can
be at a position (determined by the condition thart the energy is minimum) either
"above” or “"below’ the triangle. The even and odd linear combinations of these
two states do not have quite the same energy, though the energy difference is
very tiny (—107* V), because of the large battier between the “above™ and .
"below” locations.! Thus, strictly speaking, the ground state is nondegenerate.
However, if &4, where

d= ej"p:lmve z‘ﬁlbove = ‘7"./‘¢I:e]ow z'!’below (16-34)

is much larger than the tiny splitting, then the energy shift will be linear in the
electric field, and the molecule will behave as if it had an electric dipole moment
(cf. Eq.-16-64).

1et us Jook ar the second-order term. It reads

{butm | 2| 100} |?
. ER — g2 {—-—-7 16-
\ t0o ¢ % E’ﬂ - EHO ( 35)

The matrix clement in this expression is
<¢nlm!z|¢lﬂﬂ) = fdsr Rn!m(r) Y;;e#i) r cos & Rmn(!‘) Yno{ﬂ,q‘)) (16-_7,6)

1 8ee our simple model of a molecule, and the discussicn on p. 98.
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where we have replaced z (which appears with & pointing in the z-ditection) by
the more convenient » cos 6. The angular part of the integration can be catried
out, since

1
Yoo = —e
“" Vi
dx
cos 8 = ,\/‘; Ym (16‘37)
It is therefore
1 |
A0 Yi(8.8) —= Yio(6,8) = —— 6ubn 16-38
] i(ﬁb)\/é 1 (0.0) 3 dubno { )

by the orthonormality of the Y.
The fact that the m-value must be the same for the two states is our first
example of 2 seleciion rule, which can be stated in the form

Am =0 (16-39)
It follows from the fact that
' Lozl =0 (16-40)
that is, that the perturbation commures with L,. One thus has to evaluate the
radial integral to obtain the answer:

R= '/.om r’dr Rn]o(f) r an(f) (16-41)

This can be done,? and the result is

l 2837(,! —_ 1)2n—5
3 (” + 1)2n+6
which we write a5 f (%) #”. For the second order shift, this gives

@ ﬂ)‘
E@ — g, _.i(_
o "L G — 1

[ {aro| 2] d1o0}|? = ap? (16-42)

2628222 = ngf(ﬂ)

uctol? n—2 nt—1

—2apgr 3% ZAE (16-43)

n=3 n — l

2See H. A, Bethe and E. E. Salpeter, Quanium Mechanics of Ore- and Two-Eleciron
Aroms, Academic Press, New York, 1957, p. 262.
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On the face of it, the sum can only be evaluated term by tetm.? The
# = 2 tetm contributes 0.74 to the series, and the # = 3 term contributes 0.10.
The convergence is not spectacularly rapid, and the sum actually adds up to
1.125. The first term in the series does, however, give us an estimate of the order
of magnitude of the effect. The dependence on #4* is, of course, automaric, on
purely dimensional grounds. The factor £¢ must be multiplied by something that
is a (length)?, and the only nacural length is the Bohr radius. If we speak of 2
hydrogenlike atom, rather than hydrogen, we must make the substitution
g — ﬂo/ Z.

If we diffetentiate the enetgy shife with respect to the elecuic field, we get
an expression for the dipole moment

OEQ,
o8

This is proportional to the electric field strength, that s, the dipole moment is
induced. The polarizabrlity, defined by

d=— = 48a3 Y :,,Lf’)l (16.44)

P= (16-45)

Z
&
can thus be calculated,

In making estimates of sums of the sort that eccur in (16-35), one may
sometimes find useful upper bounds. Fot example

(P100] 2| Brim ) {Prtm | 2| Ba0c )
; Eygo — B

1
< m% @100|2 Putee} Dutm| 2| $00)  (16-46)

However, because of the completeness of the states, we may replace

;ﬁ ‘¢n!m>(¢nlm| —1 - (16-47)

as argued in (14-17), so that
; (¢lﬂﬂ|zl¢n1m)(¢n!m‘zl¢mﬂ) = {Puo|2?|dwo)} (16-48)

This, however, is casy to evaluate, Since the ground state wave function is
spherically symmetic, we have

@) = ()= ) = | (Guel o) = ai (16-49)

* Actually the second order shift can be evaluated in closed form. See, for exampie,
3. Borowite, Fundamerials of Quansam Mechanics, W. A. Benjamin, New York, 1968, PP.
328330,
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* where the last step follows from (12-31). From this we find that

> fim) =1 (16-50)
and therefore
o flzﬂﬂ) g o B ii
E F_1%3 ..2 fin = (16-51)

The relation

% | (G| 2| 100} ? = {$100] 22} din ) (16-52)

is called a sum rale, and is an example of relations thar are useful in making
estimates.

To illustrate degenerate perturbation theory, we calculate the firse order
(linear in &) Stark effect for the # = 2 states of the hydrogen atom. For the
unpereutbed system there are really fout # = 2 states that have the same energy.
These are

r
$uo = (2ag)~% 2 (1 _ a) ey
r
$rir = (2ag)y 8% 3712 (__) ey
ay
r
e = (240)_312 3z (;) e—rf'Zal Y

b1, 1 = (2ag)~¥2 312 (47’) o2 Yo (16-53)
0

The / = 0 state has even parity, and the / = 1 states have odd parity. We want to
solve an equation like (16-23) and, on the face of it, four equations are involved.
If we note, however, that (a) the percurbing potential {that is, z) commutes with
L, so that it only connects states with the same m-value, and (b) parity fotces
us to consider only terms in which the perturbing potential must connect
I =1t != 0terms, that is,

{$a1,21] 20,000 = 0 (16-54}

then the matrix in (16-23) is only 2 2 X 2 matrix. The equation reads

( (dhao| 2 Pan)  (Pono| 2| poso) )( o ) ( oy )
e& = Fv (16_55)
{210 2| haoa ) {bz10] 2| P20} ez s
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The diagonal elements are zero, because of parity, and the off-diagonal elemencs
are equal, since they are complex conjugates of each othet, and each may be
chosen to be real. We have

® 2
(a0l 2| daxe) =f f"'dr{Zag)—’e_’/’“Tr (1 - L) ,
0

349 2&19
fdQY;n(V 4r/3 Yy) Y {16-56)

= —3x
and hence (16-55) becomes

_— E(l) bt 38840 [+41
=0 (16-57)
—3eEag —FE as

The eigenvalues of this are
ED = 438y (16-58)

and the corresponding eigenstates, when properly normalized are

1 ( 1 ) g L ( 1 )
Va\l-1 an VAR,
respectively. Thus the linear Stark effect for the # = 2 states yields a splitting of
degenerate levels as shown in Fig. 16-1.

There ate some general comments that can be abstracted from the calcula-
tions just concluded.

(a) The states in the presence of the electric field are no longer eigenstates
of L? since in the above case, for example, we found that the states that di-
agonalize the perturbation were equal mixtures of / = 0 and / = 1, though they
are stll eigenstates of L, The reason, is that the pertutbation changes the
Hamiltonian, so that it no longer commutes with L2 This can be worked out in
detail, but it is really evident that the external field specifies a preferred direction,
s0 that the physical system is no longer invariant under arbitrary rotations. It is
stll invariant under rotations zbout the preferred axis, here the z-direction, and
hence L, is still 2 good constant of the motion.

(b) Quite generally, whenever there is a perturbation that does not con-
serve some quantity (for example, L? here), then the states that “diagonalize™
the new Hamiltonian in any approximation, ate superpositions of states with
different values of the previously conserved quantum numbers, and thus de-
generate levels will be split.
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m=10 Il
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Fig. 16-1. Pattern of Stark splitting of hydtogen atom in # = 2 state. The four-
fold degeneracy is partly lifted by the perturbation. The m = =1 states remain
degenerate and are not shifted in the Stark effect.

(c} We may summarize the procedure in degenerate perturbation theory
in maurix language as follows. If Hy is diagonal, but H, is not, then, since Hj and
H; do not commute, it is not possible to diagonalize H; by itself, without
“un-diagonalizing™ Hy. One must wotk with

H=H+ H

as a whole. If we work with a subset of degenerate states, all of which are eigen-
states of Hy with the same eigenvalue, then, as far as these states are concerned, H,
is not merely diagonal, but it is proportional to the unit matrix. Since H, (and
everything else) commutes with the uait mattix, one may diagonalize H; by
itself, without affecting H.

The hydrogenlike atoms considered here were somewhat idealized. As we
will see in Chapter 17, there are small selativistic and spin-orbit coupling effects
that actually remove some of the degeneracies. Does this mean that we never
really need to use degenerate perturbation theory? Actually, even if, say, ghog and
2w do not have exactly the same enetgy, it may still be sensible to take some
linear combipation of them in the perturbation expansion. If we have, for
example

Hy pu = (E2® — A) oo
Hy oo = (E" + A) g (16-59)

with A smnall, then the Schrédinger equation, wich che linear combinations, reads
{Ho -+ NHy) (mdﬂvm + a0+ N 2 Cu%)
ne2

= E (a;dtzoo -+ oo + A zz C,.d),.) (16-60)
Ry
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Taking the scalar product with dag and ¢ay, sespectively, leads to the following
equation to order A:

E® — A — (o ATh|pom) (G| AHy oo ) ) g
=E
<¢210|?\H1|¢m> E + A — {fow|NH1| 2t} o o
(16-61)
If we write
{Ba0o| AHy | Porn} = {Bara| A1 | bosu) = (16-62)
we must find the eigenvalues of the matrix
Et— A A
(16-63)
Mg Ef 4+ A

and these are
E=E0+ Vai + A? (16-64)

{In the above we have set {$uwo| Hi|dao) = (@uol Hijdmo) = 0.) We see that
when A 2> ah, we get a “quadratic” effect only. This corresponds 10 no de-
generacy, When & & ak we get the resule of the form (16-58). In the inter-
mediate region, the above, more careful treatment is necessary, Furthermore,
when the new linear combinations are used, then in second order perturbation
theory thete no longer appear very tiny energy differences in the denominators.
We do not discuss this in derail, but this is not difficult to establish.

As a final comment we point out two apparently contradicrory Facts,
(1) The predictions of pertutbation theory concerning the Stark effect are borne
out very well by experiment, and (2) the perturbation series evidently diverges,
since the pertuthing potential €z grows without bound as z becomes very
latge, no matter how small ¢€ is. The question arises whether one has any right
to believe in the accuracy of the first few terms of a mathematically divergent
series, since it is well known that a mathematically divergent series can be
rearranged to give entirely different expansions. The answer lies in the physics
and not in the mathemacics of the problem. The reason for the divergence can be
seen in: Fig. 16-2, which gives a rough picture of the total potential for x, y fixed.
It appears that there is a barrier creared for the bound electron. This barrier is
ultimately penctrable, even though for small €& it is very broad. What the marhe-
matical divergence of the series is responding to is the possibility thar the elec.
tron in the ground state, for example, has a finice (although very, very small)
probability of being sufficiently far away from the nucleus, where the external
electric field is sttonget than the Coulomb field, and the electron is carried away
by the electtic field. Thus the new “'shifted” energy levels of the hydrogen atom
are no longer stationary states, but rather metastable states. If the field is weak,
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Effective
potential

Q’ﬁ\ e?

T2 ryR 4gl)e

Fig. 16-2. Schematic picrere of potential energy as a function of z with x and ¥
held fixed. The dotted line tepresents the Conlomb porential, the dashed line the
potential energy due to the external field, and the solid line the total potential.

however, they may be stable on a time scale of the age of the universe,tand hence
the observations agree perfectly with whar the first few terms of the perturbation
series predict.

Problems

1. Constder the hydrogen atom, and assume thar the proton, instead of
being a point-source of the Coulomb field, is a uniformly charged sphere of
radius R, so that the Coulomb potential is now modified to

Vi 3 (Rz L 2) < R{an)
= — —_—— r
" 2R 3 “
22
=T r>R

Calculate the energy shift for the # = 1, / = 0 state, and for the # = 2 states,
caused by this modification, using the wave functions given in (12-25).

* Actuilly a simple barrier penetration calculation of the type carried out in Chaprer 5
shows that the time scale is more like 10199 lifetimes of the universe, for fzitly reasonable

* felds!
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2. Calculare the energy shift in the ground state of the one-dimensional
harmonic oscillztor, when the pertutbation

V= x
is added to
p!
wm L e Lpg?x?
2m

3. Consider a square well in one dimension. If the edges of the well are
rounded off as shown in the figure, what is the change in the ground state energy?

Choose your rounding-off parametrization such that V(x) dx 1emains un-

—m

changed.

— o
\. W,

4. The bottom of an infinite well is changed to have the shape

V(x)=esin% e<x<}

Calculate the energy shifts for all the excited states ta first order in ¢. Note that
the well originally had F(x) = 0for 0 € x < b, with ¥V = o elsewhere.
5. Prove the sum rule (Thomas-Reiche-Kuhn sum rule)
B2
— E, z .
; (Bn — Bl {pixla)]® =

[Hint. (a) Write the commuration relation [p,x] = #// in the form
k
% {pmoida — Gidniisio) = - o -
(b) Use the fact that

gt} = {slm 20} = £ Galltilln)

3

i

in working out the problem.]

6. Check the above sum rule for the one-dimensional harmonic oscillator,
with " taken in the ground state.

7. Work out the first order Srark effect in the 7 = 3 state of the hydrogen
atom, Do not bather ro work out all the integrals.

8. Consider an electron in a state # in 2 hydrogen atom. The atom is placed

~
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in an externz} electric field &. Estimate the lifetime of the atom, or, equivalently,
the transmission coefficient through the barrier made up of the Colulomb attrac-
tion to the nucleus. It is enough to consider a one-dimensional model of the
problem.

~ 9. Considet 2 two-dimensional harmonic oscillator desctibed by the
Hamiltonian

1
H= ?r; (P:z + Puz) + § et + )'2}

Genetalize the approach of Chapter 7 to obtain solutions of this problem in terms
of raising operators acting on the ground state. Calculate the energy shifts due to
the perturbation

V = 2axy

in the ground state, and in the degenerate first excited states, using first order
perturbation theory. Can you interpret your result very simply? Solve the problem
exactly, and compare it with a second order perturbation calculation.

[Hints. (a) Fxamine the symmetries of the unperturbed Hamiltonian, (b} De-
compose the motion into center of mass motion and internal motion.]

References

There are many examples of the application of first-order, perturbation theory
in the textbook literature, and che references listed at the end of this book may
serve as a source of further examples. For a discussion of the exact calculation
of the Stark effect see

8. Borowitz, Fundamentals of Quantum Mechanics, W. A. Benjamin, Inc., 1967.






chapter 17

The Real Hydrogen Atom

The discussion of hydrogenlike atoms in Chapter 12 was based on the
Hamiltonian

H=—-— (17-1)

In a more realistic treatment, several corrections must be raken into account.
First of all, the gxpressmn for the kinetic energy of the electron is altered when

relativistic corréctions are raken into account. In the original electron-proton

Hamiltonian we replacc

prz (lJrl)_L2
2m 2M =P M)

(m the center of mass frame) by

pZ 1 (pﬂ)!. 2
w8 mie 2M
» oL
2u 8 m¥c?

. 2.2 2,4y1/2 Eig 2
(ple* + me) +2M o ogmet + —

= m* + {17-2)
The electren rest mass term is irtelevant. The nonrelativistic term still involves
the reduced mass, but thete is now a cotrection term,

1 (p2 2

H, = ~ 3 Y «(17-3)

that should be added to the Hamiltonian Ho. We may estimate the magnitude of
the correction:

ey = (Za)? (17-4)
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For hydrogen this is of the order of 103, smaller than the reduced mass effects.

- The existence of the electron spin gives rise to another correction that is of
the same order of magnitude. It may be qualitatively understood as follows:
if the electron were at rest relative to the proton {we are discussing this on a
classical level), it would only see an electric field due to the proton charge. This
is the Coulomb potential term that appears in H;. Because the elecrron is moving,
there are additicnal effects. In the electron rest frame, the Proton is moving, so
that there is a current present, and the electron “sees” a magaetic field. If the
relative motion were rectilinear, the magnetic field, as seen by the electron,
would be v X E/c. This magnetic field interacts with the spin of the electron,
or more precisely, with the magnetic moment of the electron. We might expect
an interaction of the form

‘g8
nic

—M-B

¢ €
?ES-V)(E= —Ezs-pxwﬁ(r)

il

e 1 4
T e SpXr r dr

1 1 d
T ST XP - eln) (17-5)

where ¢(r) is the potential due to the nuclear charge. Actually this is not correct.
Tt turns out that relativistic effects associated with the fact that the electron does
not move in a straight line {the Thomas precession effect) reduce the zbove by a
factor of 2. Thus the correct percurbation is

U 1 el

Hy = .
T ame r o dr

(17-6)

Let us now use first order petturbation theoty to calculate the effects of H,
and H; on the spectrum of hydrogenlike atoms. We may rewrite H, in the form

1 (pz)e 1 pz )2
H=—--———""- . — | &
8 mi? 2mc? \ 2m
1 Ze? Zst
= — (Ho + —)(HD + —’) 17-7)
2mi r ¥

if we neglect reduced mass effects in Hy.

Hence

Zet Ze?
(Hn +_)(HD + _) qbnim)
¥ T

1
| i g } = — — nim
{Bate | Hi| o 2”“_,!( i
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1 1 1
_ — 2 TN . VAT I
al e+ e (2) @ () |
272 |2 207 N2
1 I:mc (Za):| g™ (Za) (i)
2mc? _ 25t n? ot

+ (Ze

il

)
a3l + 1/2)

(Ze)® B(Za)’]
w(l+1/2)  dnt

- L itz [

- {17-8)
In calculating the above, we have used expressions for

1 1
= <¢nlm - ‘%Im) and (7) = ('ﬁalm ¢ulm)
r T fnl

from (12-31). The spin of the electron does not enter into this energy shift, since
H; does not depend on the spin. Hy does depend on the spin, and for our un-
pettutbed wave functions we must take two-component wave functions, since
what we want to calculate is the expectation value of

1 im’d;(r) _Ze 1
2mict S-L rodr 2m2ces L s

1
”

A
~ ‘:—-
———’
A

Hi

{(17-9)

Hete, again, we have an example of degenerate perturbation theory. For a given
" mand /], there are 2(2! + 1) degenerate eigenstates of Hy, with the additional
factor of 2 coming from the ewo spin states. Thus the calculation of the energy
.. shift involves a diagonalization of a submauix, as in Eq. 16-23. We can save
" jpurselves a great deal of labor by noting that

S+L=J (17-10)
implies that
S+ SL+LE=]
that is,
SL=3(3—-L2-8) - (17-11)
Thus if we combine the degenerate eigenfunctions into linear combinations that
are_eigenfunctions of J? (they alteady are eigenfunctions of . = L. + §), then
these linear combinations will diagonalize Hy. The appropriate linear combinz-

tions were obtained in Chapter 15, Eq. 15-37 and 15-38. With these lineat
combinations we have

. 1 ‘
S-L¥iam = z (Jz - L= Sz) $ictrasm

ms=m -+ (1/2) mymm (32}
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1 1 3 ) 3l .-
=-mli+=){1+2) - -2y,

2" [( +2)( +2) ¢t J‘”z;it:;fazﬂ

1

2

= 5B ' (17-12)
dy=nz4-(1/2)
and
1 1 1 3
SLyjmr_up =—ﬁ{( -f)(1+-)—1(z+ 1)——]¢-=_
ﬁ.,iu(iﬁ}z) 2 2 2 1Yt N
1
=g RU+ ¥ici—a2) (17.13)
2 mi=m-(1,/2)

For a given / value there age (20 + 1/2) + 174+ 201 - 1/2) + 1] states. Whar
has happened is that the degenerate states have metely been rearranged, bur the
tWo groups that they have been split into behave differently under the action
of Hy. If we call the linear combinations ¢, then

VL {
@jma! HelGpmg) = = I }

Imic 3 —i—1
X f : dr PfRuu(r)]? _; (17-14)
forj =1+ 1/2, respectively,
With the help of
1 Z i
(79),., P Ry A (t7-15)
we get the energy shife
l
{_’ = J (17-16)

1
AE = | meiZe) 2+ 1/2)( + 1)

We must, of coutse combine the effects of H,and H,.
When this is done, we obtain after some algebra

- - L1 3 .
AE 1/2mct{Za) ”'[ FEREy 4”] (17-17)
for both values of I=j41/2 It s necessaty to work with the relativistic
Ditac equation to show thas the tesult is also correct when J = 0, even though
the product in { 17-14} is not well defined. :
The splitting is depicted graphically in Fig, 17.1. A very interesting result is that
the corrections add up in a manner that leaves the *Py;y and the 28,5 states
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Fig. 17-1. Splitting of the #» = 2 levels by (1) the spin-orbit coupling (which
leaves the § state unaffected) and (2) the relativistic effect. The final degenetacy of the
1512 and 2Py,; states is actually Jifted by quantum electrodynamic effects. The upward
shift of the 25,2 state is called the Lamb shift.

degenerate. A more careful discussion, using the relativistic Dirac equation, does
not alter this result. In 1947, a very delicate microwave absorption experiment
carried out by Lamb and Rethetford showed thar there was, indeed, a tiny
splitting of the two levels. The magnitude of the splitting, of order
mc?(Zer)* & log e could be explained by the additional interaction of the electron

++  with its own electromagnetic ficld, that is, as a self-enetgy effect. These matters
are outside of the scope of this book.

Let us now turn to the discussion of the behavior of hydrogenlike atoms
in an external magnetic field, that is, to the anomalons Zeeman effect. There is, of
course, nothing anomalous about the effect; it is just that the Zeeman effect
that could be explained classically was exhibited only by atoms in states in
which the total electronic spin was zero. For the other states, for which there
-was no classical explanation (since that involves spin), the Zeeman splitting
pattern was different, and therefore “anomalous.”

For the unperturbed Hamiltonian we take the usual Hy rogether with the
spin orbit term. The reason for doing this is that the external perturbation may
be small compared with the effect of what we called H,. Thus

Ho=

Pz 1z
-2: I ey LS (17-18)

The percurbation now reads

e
=— (L . N
H, Py {L + 28)'B {17-19)

The first-term is, in effect, the intéraction of the magnetic dipole moment arising



276 Quantum Physics

from the circulating charge, and the second term is the contribution of the
intrinsic dipole moment of an object with spin
g
&g
2my

M= — (17-20)

with g = 2,

- The choice of Hy dictates that we calculate the expectation value of the
perturbation in eigenstates of J* and J: (15-37) and (15-38). If we choose the
z-axis as given by the ditection of B, then we need 1o calculace

eB ¢B |
<¢jﬂ;,m (L.t + 25:)1‘@"!!#) = (@mj’;{: (Ja + Sa%@nd)

B
- ;;c s + s S:|#ima))  (17-21)

To calculate the last maerix element, we carry out the alculation explicitly,
using the eigenfunctions given in (15-37) and (15-38). Thus for F=1l+1/2
we have

I+ m+1 I—m I+ m+1
(\/ T+ 1 Y:...x++‘/21—+T Yimax- S‘l\/—m}""‘x‘“

+ l-—mY )_£(1+m+1_ [—m)
Vg Hmak- )= 2041 241

_E 2m-§-1_ fim,-
T2 2+1 A4

(17-22)

and for j = —1/2, we have

I—m F4+m+1 {—~m
——— Y — - Y
<\l 2y M \/ A1 Ve S’f\/21+1 X

_ [t w41 ) ﬁ(!—.—m 1+m+1)
Ty Ympx-p=—{— - —

2041 2 \21+1 20+1
_ _ﬁ_Zm-l-l_ fom;
o 22d+1 T T dFa
(17-23)

In both cases we used the facr that mi = m ~+ 1/2 in the above, Inserting the
above into (17-21) yields ‘

ehB
AE = mi{1+
2Zmec

T 1) j=i+1 (17-24)
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- m; =1+1/2 All energy
/_”,.— I -12 differences
£ — 32 »are
e : eAB  2U+2
- e 2 S 2me 2
Ls=1/2 \\\
\\ - - mj=i-1i2 All energy
- o ———————— —
RN eic,_—-—" ! - 32 differences
""——= o172 T ———— - 5/2 are
I =~ - . : ehB | 21
‘\\ M r 2me  2+1
~—— 1+ 142

Am; = £1,0 (17-23%)

. but since the splitting between the lines is not the same for every multiplet, we
do not get just the three lines thar we obtained for the notmal Zeeman effect in
. Chapter 13. For example, for n = 2, the *Pyz state splits into four lines, with the
. splicting two times as lasge as that of the two states in the 2Py lines (Fig. 17-3).
" If the external field is very suong, so that the spin-orbit coupling can be ne-
" glected, we may use the ordinary hydrogenic wave funcrions simply multiplied
by spinors, that is, eigenstates of L?, L,, 5%, and §.. If we call the eigenvalues of
L, and S, m; and m,, respectively, then the expectation value of H, in {17-19),
- with B pointing in the z-direction, is

= 22 (o + 2m) (17-26)

Thus the # = 2, / = 1 states ate split into five levels, coresponding to the values
ofm =1,0 —1;m = 1/2, —1/2.

In addition to the fine structure of the levels caused by the spis-orbit
coupling, there is a very tiny hyperfine splitiing, which is really a permanent
Zeeman effect due to rthe magnetic field generated by the magnetic dipole
moment of the nucleus. If the spin of the nucleus is I, then the magnetic dipole
moment Operator is

ZegN I

M =
2Mye

(17-27)
where Ze is the chatge of the nucleus, My its mass, and gy its gyromagnetic

t i The detivation of this selection rule (and others) will be discussed in Chaprer 22.
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Fig. 17-3, Zeeman effect in hydrogen, . fepresents the energy eAB/2mc, The
transitions for which a/ = I, Am = 1,0, —1 are drawn ig the figure, The location

of the unperturbed states is given by Fig. 17.1,

ratio. The vector potential due to a point dipole'is, from electromagnetic theory

1 1
Ar)= - —Mxwv)—
4x r
so that the magnetic field is
M 1 1 1
= ==V —4 —vMv) ~
B=vxa i TVt v
Thus the perturbarion is
H1 = —MG-B
=‘sm
me

Zegy 1 1 1]
- B [ | v v ]_’.v —
ZmMchéin r + V) *

I

(17-28)

(17-29)

{17-30)
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‘The expectation value of the term on the right can be calculated very straight-
forwardly. First, we note that the magnitude of the splitting is

Zelgy (Zamc)s N ( m ) )
| — ) =~ (Za)t | 2 17-31
SamMuc® 7 ar 2 \ ) ™ (17:31)

that is, it is & factor of m/ My smaller than the typical spin-otbit splittings. The
calculation of the expectation value of (17-30) in the state characterized by
! = 0, for example, the ground state, is simplified. We have

[eo(soaw L) e =sa [ansn 0t

dx; Oxe v

Because of the spherical symmetry of all the terms in the integrand except for
- the derivatives, the angufar integration will vanish unless / = £ All the 7 = £
contributions will be equal for the same teason, so that the above yietds

1s.nf Friel () -
3 r

* Thus, when inserted between / = 0 states (and only then), we may wrire

(S-V)(I-V)% = %s-m% (17-32)
Thus what is needed is
(H) = — z—ing’:cg S-1) <ve lr) (17-33)
We use the fact that® '
e lo 5(r) (17-34)
4xr

to obtain

() = gwlZa) - me (Sﬁ)( ) f Priroo(r) 52} troole)

_gwom S-1 ( R ) _

Zox mc2 — ) iRu.(0)]2 -
3 u — (Za) ” i Rnol0) | (17-35)
2 Qnly the radial part of ¥2 is relevant, To show this, we prove that (1/r%)(d/dr)

[r2(d{d¥)} (1/7) = O for r == 0, and that ¥i(1/r) integraced over a small sphere of radius «,
gives a result —4w independent of e
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When the value of the radial function at the origin is inserted into the above,
then®

4 [Za 3
| R0 ? = — ( ’”‘) (17-36)
n i
leads to the result
4 e 1 /S-1
=< g — tmer— | — .
(H.) 38 3t (Za)t me* — ( ﬁi) (17-37)

If we take the roral spin of the electron and nucleus o be F,

F=8+1 (17-38)
then
SI_F -8 -1 [FF+1)—3/4~ I+ 1)
ﬁ:;:— 2R - 2
L F=1I+}
_2{—I—~1 F=1-1 (17-39)

For hydrogen, gy = gp £¢ 5.56, and the energy difference between the excited
state, characterized by F = 1 and the ground state of F = 0 is .

4 1 1
AE = - (5.56)—— ——

3 (3-56) 1840 (137)
The wavelength of the radiation corresponding o the transition between the
F= 1and F = O states is

{mc®)

A~ 214 cm (17-40)

and the frequency! is

¥y =

f ™~ 1420 megacycles - (17-41)
The radiation arising from this transition plays an important cle in astronomy.
Ina gas of neutral atoms, the F = 1 state cannor be excited by ordinary tadiation,
because of a selection rule that strongly suppresses transitions in which thete is
no change in orbiral angular momentum. Both the F = 1 and the F = 0 states
have zero angular momentum. On the other hand, there are other mechanisms
that can cause transitions. The F = 1 state can, for example, be excited by

# See, for example, Bethe and Salpeter, /or. cit.

4 This frequency is one of the most accurately measured quantities in physics, e, =
1420405751.800 + 0.028 cycles (Hz). The number involves the distribution of magnoetiza. |
tion in the proton, but there is no. theory yet that can deal with a number of this accuracy.
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collisions, and the return to the F = 0 ground state can be detected. From an
analysis of the intensity of the 21 cm radiation received, astronomers have
Jearned a great deal about the density distribution of neutral hydrogen in inter-
stellar space, as well as the motion and the temperature of the gas ciouds con-
waining the hydrogen. The average number of neutral hydrogen atoms appeats
"to be about 1 em ™ in the galactic plane near the sun, and the temperatute is of
the order of 100° K.

Problems

1. What effect does the addition of a constant to the Hamiltonian have on
wave function?
2. If che general form of a spin-orbit coupling for a particle of mass m
4nd spin S moving in a potential Vir)is

1 1 4V

Hao = —, 5 L— )
2mie? r o dr
it is the effect of that coupling on the spectram of a three-dimensional
monic oscillator?
3. Consider the # = 2 states in the real hydrogen atom. What is the
spectrum in the absence of a magnetic field? How is that specttum changed when
the atom is placed in a magnetic feld of 25,000 gauss?

4. Show thar
1
72— = —4xd(r)
r

Use the procedure outlined in the footnote to Eq. 17-34.

5. Consider a gas of hydrogen atoms at low temperature and density. At
what temperature will the F = 1 and the F = 0 states be equally occupied?
5 {Notz. The Boltzmann factor
I . g FIT
| ives the relative probability of occupation of a given state with degeneracy g
' " when the system is in equilibrium, at temperature T.)

" 4 6. Consider a harmonic oscillator in three dimensions. If the relativistic
expression for the kinetic epergy is used, what is the shift in the ground state
energy’ )

’ <. The deuteron consists of 2 proton (charge +4¢) and a neutron {charge 0)
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in 2 state of total spin I and total angbler momentum J = 1. The g-facrors for
the proten and neutron are
&r = 2(2.7896)
oy = 2(—1.9103)
(a) What are the possible orbital angular momentum states for this system?
If it is known that the state is primarily 3$,, what admixture is allowed given that
parity is conserved?

(b} Write an expression for the interaction of the deuteron with an ex-
ternal magnetic field and calculate the Zeeman splitting. Show that if the
interaction with the magnetic field is wiitten in the form

V= —put-B
then the effective magnetic moment of the deuteron is the sum of the proton
and neutron magnetic moments, and any deviation from that result is due to an
admixture of non-§ state to the wave function.

8. Consider positronium, a hydrogenlike atom consisting of an electron
and a positron (same mass, opposite charge). Calculate (a) the ground state
enetgy, and that for the » = 2 states; (b) the relativistic kinetic energy effect and
the spin-orbit coupling; (c) the hyperfine splitting of the ground state. Compare
your results with those for the hydrogen atom and explain major differences.

References

The most detailed discussion of the physics of hydrogenlike atoms may be
found in

H. A. Bethe and E. E. Salpeter, Quantum Mechanics of Ore- and Two-Electron
Arems, Springer Verlag, 1957.

The Thomas precession is discussed in
R. M. Eisberg, Fundaments of Madern Physics, Wiley, New York (1961)



chapter 18

The Helium Atom

The helium atom consists of a nucleus of charge Z = 2 and two electrons,
“which we label 1 and 2. Fach electron is attracted to the nucleus, and the two
‘electrons repel each other. We assume, and this will turn out to be cotrect, thar
noforces, other than the electromagnetic ones (Coulomb to a very good approxi-
marion), are necessary to describe the dynamics of the helium atom with the
help of quantum mechanics.
. If the nucleus is placed at the origin, and if the electron coordinates are
" labeled s and r,, then the Hamiltonian for the atom is (Fig. 18-1)

o, 1, ¢
H= wm + m rn 2 + [ — r2 (18-1)
“Here 2 is the electron mass. We shall ignore the small effects connected with the
‘motion of the nucleus,! relativistic effects, spin-orbin effects, and the effect of
the current caused by the motion of one electron, upon the other electron. The
- above Hamiltonian may be written as

H= HU £ HO 4+ V (18-2)
with
: 1 Zet :
H® = —p?— — 18-
_ 2m P i (18:3)
and
¢ '
V= (18-4}
\F1 — T2

We shall work with the nuclear charge Z and set Z = 2 later. Gur work on the
“hydrogen atom provides us with a complete set of eigenfuncuons for H and

L The reduced mass effect takes a somewhat different form since one is trying to
convert 2 three-particle problem into an effective two-panticle problem. This is warked our in
D. Pack, Introduction to the Quanturm Theory, McGraw-Hill Co. (1964).

283
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Fig. 18-1. Coordinates used in the formulation of the helium Hamiltonian.

H®,_ Thus, if we were ta ignote V in the total Hamiltonian, we would have a
solution to the eigenvalue problem for the two-electron system. The eigen-
functions would be

#(FLE) = Dt (F1) Drotims0) (18-5)
for the equation
[H® 4+ H®] alr),rs) = Ew(r,ry) (18-6)
and the energy would be given by- (Fig. 18.2a)

E=E, + E, (18-7)
where E, = —{(mc?/2)(Za)}/nt. Thus in the idealized model in which the two
electrons ignore cach other, the lowest energy is

E = —2E = —m*(2a)? = —1088 eV (18-8)
Note thac this is 2 X Z* = 8 times the hydrogen energy of —13.6€V. - .

The first excited state is one in which one electron is in its ground state,
» = 1, and the second electron is raised to the first excited # = 2 state. Then

E=FE + Fh=—680eV (18-9)

The jontzation encrgy, that is, the energy required to remuove one electron from
the ground state to infinity is

Eigniz = {E1 + Em) — 2E, = 544 eV (18-10)
and; interestingly enough, the onset of the continuum lies Jower than the excited
state for which both electrons are in the # = 2 state. The energy of the latter
state is

E = 2F; = —27.2eV {18-11)
and it brings up a new pheniomenon: the existence of a -discrete state in the

continuum for the Hamiltonian HY + H®, We shall bneﬂy discuss the impli-
cations of this at ¢the end of the chaprer. :
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Fig. 18-2. (4) The spectrum of helium as it would look in the absence of the
elecrron-electzon interaction. The zero energy point is chosen at the ionization
enetgy. (B) The acrual specttum of helium for the singlet (parahelium) and triplet
{orthohelium) states. The level labeling has a suppressed (1s5), so that the Jevel
. {2p) is approximately described by the (11)(2p) orbital.
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Since the two electrons ate identical Jermions we must make the toral wave
. function antisymmetric under che interchange of space and spin cootdinates of
the electrons. Thus a proper description of the ground state of this idealized
model is

#(T1,re) = Pioo{rs) Poe(rs) Hingler . (18-12)
The spatial part of the wave function is necessarily symmetric, and that is why the
state must be a spin singlet state

1
Kinglee = —7= (xPx® — xBy2 18-13
singlec = 7 (x1'x x ) ( )

For the first excited state, we have two possibilities, which, for ¥ = 0, are
degenerate in energy. These are

= % [B100(1) $21(12) + Grim(r) Proors)] Xs;nslﬂ (18-14)

and the space-antisymmetric, spin symmerric

u) = ‘% [@100(r)} Parm(rs) — dagmlry) 100{¥2)] Kerioer (18-15)

whete
1)_ (2
X
1 1} (2) D2
Xll.'iplﬂ = \/5 (XEI»)X(—) + x(_)x(+)) (18—16)
x(l)x{f)

is orthogonal to X o,

The presence of ¥, the electron-electron Coulomb intefaction may, in
first approximation, be treated as a perturbation. Let us first compute the encrgy
shift of the ground stare to first order in V. We have

. .
P — ﬂu(!‘i,l'g) (18-17)
—

I

Since the pertutbation does not involve the spin, we need only consider

AE :fd‘rld‘rz H;(l‘nl'z)

2
AE = fd‘r;dar,‘qﬁmq(rlnﬂ ﬁ Iqblm(rg)lﬂ (18-18)
— Ty

The integral has a simple physical interpretation. Since | ¢1e0frs) 2 is the proba-
bility density of finding electron 1 ar r,, we may interpret ¢[¢uo{ri}|? as the
charge density due to electron 1. Hence

Ury) = f %, elunlen) | - {18-19)

[r — T3]
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" is the potential at ¥ due to the chatge distribution of electron 1, and
AE = [dsrg £I¢1m(l'2)12 U(l"ﬂ) (18-20)

‘is therefore the electrostatic energy of interaction of electron 2 with that po- .
tential. The integral can be carried out. With $ue = (2//Em) (Z an) ¥ e~ 5=
we have

1 2 i «
AE = [ﬁ (Z/aa)"} ezj it dry e—zz.«./a.j ro? dry ¢ 2N
T a 0

fdﬂlfdﬂz —1— (18-21)
[£) — r2f

In writing this, we used the separation

fd3r=f rPdrdQ
o

and isolated the only rerm that depends on the angles between 1 and ry. We have

1 _ 1
irs — 1) (P4 n?— 2rpcos§)R

{18-22)
whete 6 is the angle between 1y and r2. We may proceed in one of two ways.

(a) Most directly, we choose the direction of r, as z-axis for the 41,
integration, and get

1 2 1 1
dQQ—— =
,[ 2 ‘l‘] - l';t ,[() dq&[_l d{cos 6) (1’1? + P‘gz — 2fyrg COS 6)1"2

cosé = +1
= — 2 I:(alfl2 + 2 — 272 COS H)If*:l x 2
2rirg cos = —1
T .
=—(ntrn— n—mnl) <% (18-23)
nrg

The integration over 49, is wivial, since nothing depends on that angle, so that

fdﬂl = 4r (18-24)

~and we are left with

2 Z X ® —2Zn/m - —2Zr3/,
4e* | — rodrie rodrs e f1féa
@ @ A

Xn+rn— rn-— rz_|) (18-25)
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(b) A very uscful expansion, necessary when there is additional angular

dependence in the numerator, is the following. For », 4 ¥a,

1'22 ¥s —1/2
(12 + r? — 2rrscos )12 = {1 + =, — 2—cosf
¥1 1
. 1 = ra L
= . E . Prlcos 6) (18-26)
1 L.=0 1
with the roles of r, and rs reversed when r; > r. Thus
1 =, ri
a2 | 4G, m = {d | d% E s Pi(cos @) {18-27)
1— >

L=0

whete #, (r<) is the larger (smaller) of r, and r. We can now proceed as be-
fore, using the fact that

%f l d(cos @) Prlcos §) = dp (18-28)

as 4 special case of

1 ! Sryr
;[_l d(cos 8) Pr(cos 8) Pr{cos f) = ﬁ (18-29)
In any case, (1B-25) becomes
AE = 4e“(2/40)“[ r1 dry ¢~ na { 2 [ﬂ it dry ¢ T3S
[ 0 -
+ 2'1[ e drz 0_22"/“] . (18'30)
T
The integrals are straightforward, aad yield the apswer
Zet 5 1 : i
aE =250 _ 24 (— mcza*) : (18-31)
B dy 4 2

This is a positive contribution, since it atises from a repulsive force, and its
magnitude, for Z = 2 is 34 eV. When this is added to the zeto order result
of —108.8 eV we obtain, to first order

Erm~ —748 eV (18-32)
When this is compared with
Eeap = —78.975 €V ) (18-33)

a sizable discrepancy is seen. Physically, we may artribute this discrepancy to
the fact that in our calculation we took no account of “screening”’, that is, the
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" effect that the présence of one electron tends to decrease the net charge “seen’
by the other electron. Very roughly, if one argues that, for example, electron 1

half the time "'berween” electron 2 and the nuclens, chen half the time electron
2 sees a charge Z and half the time it sces 2 charge Z — 1, that is, effectively, in
the expression

1
E+ AE= — > mcta? (222 — % ) {18-34)

: Z — 1/2) should be substituted for Z. This does improve agreement, but the
de argument advanced is not sufficient justification for the choice of 309 for
probability of effective screening. We will return to this subject later in this
chapter, when we discuss the Rayleigh-Ritz vatiational principle for the ground

We next consider the first excited state of helium. Tt will be sufficient to
alculate the energy shift with’the singlet and wiplet m = 0 states listed in
18-14) and (18-15), since the shift is caused by a percurbarion that commutes
with L, For such a perturbation, the shift must be independent of the m-value.
Agpin, because of the spin—independence of the perturbing potential, V, we have

: AE®Y = % et [ d*n j dry [$roo(ry) dan{rs) £ dan(rs) droolra)]*

X 1 [r00(r1) danolrs) £ Gaao(r1) duafrz)]

lry — 13

e"'fdarlfd:’f:l'#m(l's)lzwzm(fﬂ)la —
jrs — e

fri—

L f . f s il Ble) T ol ()
: ' (18-35)

In obtaining this simplified form, we made use of the symmetry of ¥ under
) ¥ Ia.

The energy shift is seen to consist of two terms: the first has the familiat
form of an electrostatic interaction between two “electron clouds” distributed
" according to the wave functions of the two electrons. This term is just 2 simple
generalization of the term that we found for the ground state energy shift. The
_second term has no classical interpretation. Its origin lics in the Pauli principle,
and its sign depends on whether the state has spin 0 or 1. Thus, because of this
- exchange contribution, the singlet and triplet terms are no longer degenerate.

Although we considered # = 2 here, we have quite generally

AES’! = Ju — Ku ‘
AES = Ju + Ku (18-36)
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The integrals can be evaluated in closed form [it is here that (18-27) becomes
useful], but we shall not do this bere. The integral J,; is manifestly positive, and
it turns out that this is also the case for K. For I = » — 1 this is obvious: the
wave functions appeating in (18-35) have 0o nodes in that case, That the triplet
state should have a lower energy than the singlet state, that is, thar

Jrnl — K <JM + K.
that is,
Ku>o0 (18-37)

can he argued on qualitative grounds. For the triplet state the spatial wave func-
tion is antisymmetric, so that the electrons are somewhat constrained to Stay
away from each other. This tends to reduce the screening effect, so that each
electron “'sees” more of the nuclear charge, and it alsc tends to make che repul-
sion berween the electrons less effective than for the spatially symmetric singlet
state. An interesting aspect of this result is thar, although the perturbing po-
tential ¢/ ry — x| does not depend on the spins of the electrons, the symmetry
* of the wave function does make the potential act as if it were spin-dependent.
We may write (18-36) in a form that exhibits this. Let the spins of the two
electrons be 8, and ss. Then the total spin 8 = g + 85, and

8% =82+ 82+ 28+ 5 {18-38)

If we act with this on tripler and singlet states (18-16) and (18-13) that ate also
eigenstates of 8,? and s,?, we get

S(S + 1R — 2ﬁ2+iﬁz+zsl - 8
that is,

L ipl
— toplet
> P

281'Sz/ﬁ2 = S(S+ 1) -

LY RV]

- g singlet (18-39)

We may thus write, in tetms of the 6’s related to the spins by s; = (1/2) g,
ABy ;= Juoy— é (1 + 6 - é) Kug (18-40)
We shall see this phenomenon again when we discuss the H, molecule. Usually
spin-dependent forces between aroms ate quite weak. As illustrated in the

example of spin-orbit coupling, the spin-dependent forces tend to arise from
relativistic corrections to the static forces. In the spin-otbit example, these forces
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{15}z
{15Hi2p)

(15)?

Fig, 18-3. Schematic sketch of splitting of the first excited states of helium.

are down by a faceot of o2, which is just {#/c}.? Such forces could not be strong
enough to keep the electron spins aligned in a ferromagnet, except at un-
realistically low temperatures.? The spin dependence due to exchange is much
stronger than that: the force is of the same order of magnitude as the electro-
static force, and, as first observed by Heisenberg, it is tesponsible for the phe-
nomenon of ferromagne.tism_

The spectrum of the first few excited states of helium is shown in Fig. 18-3.
The notation used for the unperturbed states is that of orbitals, that is, the quan-
tum numbers of the unperturbed electrons. Thus both electrons in the ground
state are in # = 1,/ = Q states, and we write this as (15,15), or more briefly (1532
It shouid be understood that when we write (15)(2¢), as for the first excited state,
this does not mean that one electron is in one state, and the other electron in the
other, since we must write totally antisymmertic wave functions for the electrons.
‘Another way of labeling the state is by the *$t'L; notation, which we use for
the perturbed states in the figure. We sec that the singlet states lic above the
triplet states in 4. given muleipler. This follows from the symmetry (cf. our
argument that K.r > 0) and is a special example of one of Hund's Rules: Other
things being equal, the sates of highest spin will have the lowest energy.
’ 1f we excite helium from the ground state by shining ultraviolet light on it,
we find that the slection rube AL = 1, which we will detive later, implies an ex-

2 A useful numerical relation is that in E = BT a temperature of 300° K coresponds
to an energy E of 1/40 eV,
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citation to the P states. Furthermore, there is a selection rule AS = 0, that is, only
transitions singlet — singlet and triplet — triplet are probable.? Hence the state
most strongly excied from the ground state is the 1Py state. ‘The other levels
may also become occupied rhrough other mechanisms, for example, collisional
excitation. Once occupied, the radiative transitions to the ground state are very
improbable. The P state, which may be populated when atoms in the 1P, state
undergo collisions with other atoms in the gas, can only decay to the 35, state,
and that state is metastable, since it cannot decay to the ground state easily. The
face that there are no transitions, to good approximation, between triplet states
and singlet states, led, at one time, to the belief that there existed two kinds of
helium, ortho-helium (triplet) and para-helium (singlet).

The spectrum of helium that we saw in Fig. 18-25 shows that the excited
states (15)(nf) have energies that do not differ very much from those of the
hydrogen atom levels. Thus the binding energy of one electron in the arom is
24.6 eV (rotal binding energy minus binding energy of singly ionized helium =
79.0 — 544 = 24.6 eV), whereas the energy that would be liberated if one
electron were to be removed from the 2s state is of the order of 4 — 5 eV, which
is compatable to the energy 3.4 €V (= 13.6/%% eV) for hydrogen. The reason for
this effect is that the "outer” eleceron sees only a unic positive charge, since the
“inner" electton in the (1s) orbital tends to shield the nucleus, leaving a net
effective charge ~ Z — 1. This is not the case for the ground stare, since both
electrons have access to the nucleus. Thus the ground state lies quite a bit deeper
than the hydrogen ground state,

e In our discussion of the first order calculation of the ground state energy,
we noted thar there was a discrepancy of about 4 ¢V from the expetimental
value. Rather than attempt an estimate of the second order result, which would
be very tedious, we turn to an entirely different method of calculating the
ground state energy—the Ritz variational method.

Consider @« Hamiltonian H, and an arbitracy square integrable function ¥,
which we choose to be normalized to unity, so that

@w)y=1 : (18-41)

This function ¥ can be expanded in a compleze set of eigenstates of H, denoted
by ¢,

By = Efn []8'42)
The expression reads

T =3 Cin (18-43)

3 Selection rules will be discussed in Chaprer 22.
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Now
@HE) = X X GlalHl¥m) Ca

= 3 3 CCnEn(fultm)
2 |C*En

> EQ, |Gl (18-44)
| ]
, Since {18-41) implies that
Y lalr=1 (18-45)
we obtain the result that
Eo < (¥|H|¥) (18-16)

e may use this result to calculate an upper bourid on Ee. This can be done by
ocosing 2 ¥ that depends on a number of parameters (a1, ap, . . ), calculating
% | H| ¥}, and minimizing this with respect to the parameters.

We illustrate the utility of this procedure by calculating the ground state
enetgy of helium with a ¥ chosen to be a product of hydrogenlike wave func-
tions in the (1s) osbitals, but corresponding to an arbitrary charge Z* We take

F{r,rs) = puolr:) Proolrs) {18-47)
where
2 * 2
(L - '"Z_{') YilT) = edrnlr) (18-48)
2m r

with ¢ = —(1/2) mc*(Z*a)®. We now need

[ diry f d®ry \(’:oo(l'l) 'I’:m(fﬁ) (% +

p 72 2

2m 31 r2
+ m) $10u(r1) ¥rcolrz) (18-49)
We have
[ [ s it vimten (B2 - 2 vt oo
2m 1

. 2 PAR: . _
= [d*n Yroo(rs) (p -—+ M) Poo(r1)

2m ry - r
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cer @ =D [ ot -
1
= e+ (ZF — Z) e z
&
= e+ Z¥Z* — Z) mcta® (18-30)

An identical factor comes from the Hamiltonian for electron 2, and the expecta-
tion value of the electron-electron repulsion has already been calculated in
(18-31), except that we must substitute Z* for Z thete. Adding up the terms, we
get

1
H ) = — | (zz*z rarz -z z*)

1 5
- imczaz (422* — 27% Z_i Z*) (18-51)

Minimizing this with respect to Z* vields
4 P ¥y

5
=z7- = 18-52
" (18-52)
which is an imptbvement on the guess we made eatlier (Z — 1/2). We thus
obtain

1 5\

Ey < — - ma?| 2 (Z — ﬂ) = —77.38 ¢V (18-53}
2 16

when we substitute Z = 2. This is much better than the first order perturbation

result. .

The variational calculation can be done with more complicated trial wave
functions. Pekeris? used a 1075 term wave function and minimized (¥iH|¥)on
a computer. The resulting bound agrees, within experimental errors, wich what
is measured. It is, of course, true that such a complicated wave function does not
bave a form that is as easily interpretable as (18.47), with its partial screening
effects. Tt does, however, provide strong support for the correctness of quantum
mechanics, and for the assumption that only electromagnetic forces are required
to explain the scructure of atoms. :

In conclusion, we briefly return to our observation that there exist eigen-
values of H® 4+ H that lie above the ionization threshold and that are never-
theless discrete. The states labeled by the otbitals (2:)2 or (25}(2p), for example,
lie well above the ionization energy. This has some dramaric physical conse-
quences, Consider, for example, the (25)(2p) state. If the electrons form a spin

¢ This is discussed in Bethe and Jackiw, Joc. cit.
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singlet state, then this will be a 1Py state, and it can be excited from the ground
state by the absorption of radiation, since the selection rules A/ = 1 and AS = ¢
ate not being violated. This state, once excited, need not decay back to the
ground state (1Sy) or to another state allowed by the selection rules (a 1D, stare,
say), because it can go into another channel: it can decay into an electron and
singly ionized helium, Het, with the electron energy determined by energy
conservation. This process is described as antoionization.

The (2:)(2p) state in the continuum will show up very clearly in the
scatteting of electrons by Het ions. When the electron enetgy is such that the
compound state can be formed, a very dramatic peak will occur in the scartering
rate. Similarly, in the absorption of radiation by helium, in the vicinity of the
energy of the compound state (¢~ — He™), a sharp peak is seen in the absorption
(Fig. 18-4). There is absorption at other energies, too, since the process

radiation + He — ¢~ 4 He™

can occur, but the absorption at energies away from the compound state energy
will vary vety smoothly with energy, We can describe the state in still another
way by calling it a resonans siate. Since it decays into its constitueats ¢~ + Het,

| I | | 1
20 200 190

Wavelength (A)

Fig. 18-4. Resonance in the helium absorprion spectrum above the continuum
threshold; the first peak occurs at the energy cortesponding to the location of the
(29)(24) level. (From R. P. Madden and K. Codling, Phys. Rev. Letters, 10, 516
(1963), by permission.)
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it does not exist forever. Hence, by the uncerzinty relation, AE = R/AL, it
appears that its energy is not precisely defined, which seems to contradicr the
fact chat the (26)(2p) state does have a well-defined energy. It tums out that if
the coupling of the discrete state to the continuum state is taken into account,
the state ceases to be discrete, and its energy may lie anywhere in a nartow range
about the energy as calculated without the coupling. We shall teturn to this
topic in Chapter 23 and in Special Topics section 4, “Lifetimes, Line Widths,
and Resonances.”

Problems

1. Consider the helium atom in the approximation in which the electron-
electron intetaction is ncglected, What is the lowese otthohelium (spin 1) state?
What is its degeneracy in the above approximation? Write down the expression
of the splitting due to electron-electron tepulsion in first order perturbation
theory, and estimate its magnitude.

2. Calculate the energy shift AES) (2 = o, 1).

3. Consider the lowest state of orthohelium., What is its magnetic moment,
that is, caleulate the interaction with an external magnetic field,

4. Consider
B = (|H]E)

with an arbitrary trial wave function ¥. Show that if ¥ differs from the correct
ground state wave function ¢ by terms of order ¢, then “E” differs from the
ground state energy by terms of order €2,

(Note. Do not forger the normalization condition (W|¥)=1)

5. Use the variational principle to estimate ihe ground state encrgy of the
three-dimensional harmonic oscillator, using the trial wave function

¥ = Neor

6. Consider a one.dimensional cut-off harmonic oscillator of the form

1
Emmz(xd — &% |x| < a

=0 ix| > a

Vix)

Use the variationa! principle to calculate the best upper bound to the ground
state energy using the exponential form Ne~#1%1



The Helium Atom 297

7. Consider the binding of a proton and a neutron (both with me® =
938 MeV, approx) by means of a potential

—rfra

r/r

- with the system in an L = 0 stare. The range of the potential is given by n. Use
the following procedure to calculate the depth of the potential required to give
the binding energy Es. (a) Calculate an approximate value of the binding
encrgy using the variational principle. (b) In the expression that connects the
* approximate value with ro and the depth of the potential, insett the experimental
' value of Ep. Do your numerical evaluation using ro = 2.8 X 107" cm and
Ep = —2.23 MeV. (Do not forget the reduced mass.)

Viry = Vo

8. Consider a finite-dimensional mauix H;;. Show that the condition for
minimizing
W\H|®) = 30 4 Hi s
1,41

subject to the condition

) = T a1

yields the cigenvalues of the matrix H.
(Hins. Use the method of Lagtange‘ multipliers.)

9. Use the vatiational principle to show that a one-dimensional attractive
potential will always have a bound state.
(Hinr, Evaluate (| H|¥) with a convenient trial function, for example, Ne 87
‘and show that the above can always be made negative.)

10. Use the datu of Fig. 18-4 to compure the location of the (25)(2p) level
above the ground state of helium and compute the velocity of the electron
emitted in autoionization, if the He¥ jon is in its lowest state at the end. What
will it be if the Het ion is in its first excited state?

11. Consider a wave function y{e, &g, . . . @) for which only the de-
pendence on some parameters is exhibited. The wave function is normalized

Gl an . o) [Wlon, g, o)) =1

and the dependence on the parameters is so chosen that

& = (Wa, .. JH|Ple, - . )

is a minimum, Show that the parameters are determined by the set of equations

(\p(al,...)im %)—#(W(al,...)!%>=~“0 i=1,2,...#2
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where p is a Lagrange mulciplier. Let F1 depend on a paremeter N (e.g., the
nuclear chaige or some distance, say the internuclesr distance in a molecule).

_Then the o; will depend on that parameter. Prove that
46 OH
e ('P(a], .2 l_ Y [¢lan, . . -))

This is known as the Feynman-Hellmann theorem and is very useful in molecular
physics calculations.

12. Use the variational principle to estimate the ground state enetgy for
the anharmonic oscillztor

2
H=5 4
2m
Compare your result wich the exact result

Ey = 1.060M1% (jz—)m
2m

Refetences

A very nice discussion of the spectrum of helium may be found in

H. A. Bethe and R. W. Jackiw, Intermediate Quantum Mechanics, W. A. Benjamin,
Inc., 1968,



chapter 19

The Structure of Atoms

The energy eigenvalue problem for an atom with Z electrons has the form

(TE-Z+3

i=1 2m ¥i i il'; = rii

)\b(rl, To ..., rz) = Bf(rs,es, ... ,vz) (19-1)

and is a partial differential equation in 3Z dimensions. For light atoms it is
possible to solve such an equation on a computer, bur such solutions are only
meaningful to the expert. We shall base our discussion of atomic structure on a
different approach. As in the example of helium (Z = 2), it is both practical and
enlightening to treat the problem as one involving Z independent electrons in a
single potential, and to consider the electron-¢lectron interaction later. Percurba-
tion theoty turned our 1o be adequate for Z = 2, but as the number of electrons
increases, the shiclding effects, not taken into account by fitst order perturbation
theory, become more and more important. The vatiational principle discussed
at the end of Chapter 18 had the virtue of maintaining the single-particle picture,
_while at the same time yielding single particle funcrions that mcorporate the
scteening cofrections.
To apply the variational ptinciple, let us assume that the trial wave func-
tion is of the form

Y, To, .., T2) = dufr) da(rs) .. . pz(rz) {19-2)

Each of the functions is normalized to vnity. If we calculate tht expéctation
value of H in this state, we obtain

(H> = Z dar! d’t (l‘l ( ﬁ vfej z ) ¥ ([‘;)
2m

+L’22 E[j‘dﬁ' dr; l¢(l’;)|2 q&,(rj)\ﬂ (19-3)
I3 irl‘ l‘,[

The procedure of the variational principle is to pick the ¢:(r:) such that (H}isa
minimum. If we were to choose the ¢.(r;) to be hydrogenlike wave functions,

plals]
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with a different Z; for each electron (and with each electron in a diffetent quan-
tum seare 1o satisfy the Pauli exclusion principle), we would get a set of equa-
tions anzlogous to (18-31) and (18-52). A more general approach is that due to
Hartree. If the ¢;(x;) were the single patticle wave functions that minimized {H),
then an alteration in these functions by an infinitesimal amount

#ilrs) — ¢ilri) + Milx) (19-4)
should only change {H} by a term of order A% The alterations must be such that

fdal'gl@i(l'.:) + )\ﬂ(r‘) ‘2 =1 (19-5)
thar 1s, to fitst order in A,
f Sl ) + il £1Ed] = 0 (196

Let us compute the terms linear in N that arise when (19-4) is substituted into
(19-3). Term by term, we have

}'__‘, f 2o, [qb:‘(r.-) (— %v,ﬂ) MAT) + Mi(es) (— ;—; v‘.z) ¢,-(r,-)]
N E [ - L s+ [ - Lovinin )

(19-7)

To obrain this we have integrated by parts two rimes, and used the fact that
fir) must vanish at infinity in order to be an acceptable variation of a square
integrable function. Next we have

—X Z fdal‘.- [f:(l'-) E:f $ilr) + $i(r) % fa(l'z)] {19-8)
and finally

vy 3 [, f F L S Y S TP P S (PR

i=f
+ 1f; (rj} $ilr) + £r) $ie)[o:x) 2] (19-9)

We cannot just set the sum of rhese three terms equal to zero because the f(r,)
are constrained by (19-6). The propet way to account for the constraint is by the
use of Lagrange multipliers, that is, we multiply each of the constraining rela-
tions {19-6) by & constant (the "multiplier'’) and add the sam 1o our three terms.
The total can then be set equal to zero, since che constraints on the fi{(r;) are
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now taken care of. With a certain amount of notational foresight we label the
multipliers —e;, and thus get

* R® + 2
Z‘; f dr; { fitrd [—' o Ve%-r(n)] - fi{®d Zji’ dhf(l'a‘)}
+o3 8 [[anam e 2L o)

isfi F |
— & [ % ff(r;) ¢:(r;) + (complex conjugate term) = 0 (19-10)

In detiving the second lie, first we converted the double sum > isi 2o into
(1/2) X iw 2.5 which is unrestricted except for the requirement that 7 > 7,
and then used the fact that the integrand in (19-9) is symmetric in 7 and j. Now
fi(x)) is completely unrestricted, so thac we may treat fi(ro) and fi(x) as com-
pletely independent (each one has a real and an imaginary part). Furthermore,
‘other than being square integrable, they are completely arbitrary, so that for
(19-10) to hold, the coefficients of fi(r:) and £ (r.) must separately vanish a# each
point x;, since we are allowed to make local variations in the functions fi(r;}
and £:(r;). We are thus led to the condition that

72 FA (r}|
[_ —wi— =), | diry M] #iry) = expslrs)  (19-11)
2m i i [r: — 4
and the complex conjugate relation.
This equation has a suaightforwatd interpretation: it is an energy eigen-
value equation for electron “#” located at r;, moving in a potential

Ze a3 [ |$s(r) 2
i

ri i r; — 1

Vi(l'.') = - (19'12)

that consists of an attractive Coulomb potential due to a nucleus of charge Z,
and a repulsive contribution due to the charge density of all the other electrops.
We do not, of course, know the charge densities

pilr;) = e|d;(r)|? (19-13)

of all the other elecrons, so that we must search for a self-consistent set of ¢i(x.),
in the sense that their insertion in the potential leads to eigenfunctions that
reproduce themselves. The equation (19-11) is a rather complicated integral
equation, but it is at least an equation in three dimensions (we can replace the
variable r, by r), and that makes numerical wotk much easier, An even greater
simplification occurs when Fi(r) is replaced by its angular average

&
Vi(r) = f ';{% Vi(r) {19-14)
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for then the self-consistent potential becomes central, and the -self-consistent
solutions can be decomposed into angular and radial functions, that is, they will
be functions that can be labeled by n;, [, m:, o;, with the Jast label refetting to the
spin state (§; = +1/2).

The trial wave function {19-2) does not take into account the exclusion
principle. The latver plays an impottant role, since if all the electrons could be in
the same quantum state, the energy would be minimum with all the electrons in
the » = 1,/ = 0 orbital.” Atoms do not have sucha simple structure. To take the
exclusion principle into account, we add to the Amszez represented by (19-2) the
rule: every electron must be in @ different state, if the spin states are included in the
labeling. A more sophisticated way of doing this automatically is to replace
(19-2) by a ttial wave funcrion that is a Sarer determinant [ef. (8-60)]. The resule-
ing equations differ from (19-11) by the addition of an exchange term. The new
Hartree-Fock equations have eigenvalues that turn out to differ hy 10-20% from
those obtained using Hartree equations (with the rule stated zbove), and since
it is a little easier to talk about the physics of acomic structute in terms of the

" Hartree picture, we will not discuss the Hartree-Fock equations.

The potential (19-14) no longer hias the 1/r form, and thus the degeneracy
of all states with a given # and / < # — 1 is no longer present. We may expect,
however, that for low Z ar least, the splitting for different # values for a given
7 will be smaller than the splitting berween different n-values, so that electrons
placed in the orbitals 11, 25, 2p, 35, 3p, 34, 45, 4p, 44, 4f, . . . will be successively
less strongly bound.! Screening effects will accentuate this: wheseas ; arbitals do
overlap the small r region significantly, and thus feel the full nuclear artraction,
the p-, d-, . . _ orhitals are forced out by the centrifugal barrier, and feel less than
the full actraction. This effect is so strong thar the energy of the 34 electrons is
vety close to that of the 4relectrons, so thar the anticipated ordering is sometimes
disturbed. The same is true for the 44 and 55 electrons, the 4f and 65 clectrons
and 50 on. The dominance of the Ldependence over the #-dependence becomes
mote important as we go to larger Z values, as we shall see in our discussion of
the periodic tabls. :

The number of electrons that can be placed in orbitals with a given (1) is
2(2! + 1), since there are two spin states for given m-value. When all these
2(22 4 1) staces are filled, we speak of the dosing of a shell. The charge density for
a closed shell has the form

i
¢ Z_r | Raz(r} | ?] Vi (8,90 | 2 (19-15)

! The notation is the same aj that used for hydrogen, A mose sensible notation, used
by nuclear shell-strucrute physicists, is to replace the by » — [, which is just an index
tepresenting the ordering of a given Lstate. Thus instead of srarting with 34 stares, for
example, it might be more sensible to have the lowest 4 state called the 14 state, and 5o on.
We shall nevertheless continue o use the conventional notation, even though the #-value
does not have much to do with the ordering of levels for large Z atoms.
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and this is spherically symmetric because of the property of spherical harmonics
_ that

! j
E: Y842 = 21 {19-16)

Pl iz

Letsus now discuss the building up of atoms by the addition of more and
mate eléctrons to the appropriate nucleus, whose only role, in our approxima-
tion, is to provide the charge Z.

Hydrogen. Here there is only one electron, and the ground state con-
figuration is {15). The spectroscopic description of the electronic state is Sy,
and the binding energy, as is well known, is 13,6 eV.

Helium. Here Z = 2, and, as we saw in Chapter 18, the ground state con-
figuration is (15)?, which is a shorthand notation for (15)(1¢). The state, in the
(L.,5) description is z 'Sy state, and the toral binding enetgy is 79 eV. After one
electron is removed, the remaining electron is in a (15} orbir about a Z ="2
charge, so that its binding encrgy is 13.6Z% = 54.4 eV. Thus the energy required
to remove the least bound electron, the jonization energy is the difference, chat is,
246 eV (see Fig. 18-28). It is also interesting to estimate the energy of the first
excited state, which is (15){2s): this is 13.6 Z* + (13.6/2%)(Z — 1)* because of
the shielding, that is, approximately 58 eV. Thus it tzkes approximately 79—
58 22 20 eV to excite the helium atom.? Because the electtons form a closed
shell it is chemically inert, a property shared by all atoms whose efectrons form
closed shells. ’

Lithium. Here Z = 3, and the exclusion principle ferbids a (15)® con-
figuration. The lowest lying accessible configuration is the (15)*(2J). Since we
afe adding a single clectron to a closed shell ('), the speciroscopic description
of the state is 2512 as for hydrogen. If screening were perfect, the additional
electron would only “see” 2 Z = 1, and since # = 2, we would have an energy of
13.6/4 = 3.4 V. The screening is not perfect; in fact, since the orbital of the
extra electron is (25), there is a reasonable ovetlap of the wave function at » = 0,
and hence the effective Z is larget than 1. The experimental energy, 5.4 eV

shows that Z* = 1.3.

Beryllinm. With Z = 4, the natural place for the fourth elecuron to go is
into the second space in the 25 orbital, so that the configuration is (11)%(2s)? and
we again have a closed shell, with a '8, spectroscopic state description. As faras
the enetgy is concerned, the situation is very much like that of helium. If the

£ This is a crude esrimafk thar ignores the electron-electron repulsion and exchange
effects. The difference between the 20 €V and the 24.6 eV is the 4-5 ¢V that will be released
when the excited atom decays 1o its ground state. (See Fig. 18-24.)
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screening were petfect, the only difference would be that the last electron is in
an # = 2 state, giving a binding energy of 24.6/a* = 6.2 V. Screening is not
perfect, and the experimental value is 9.3 eV. Although a shell is closed, the
- excitation of an electron to a 2p state will require relatively little energy. Thus in
the presence of another element a tearrangement of electrons may yield enough
enetgy to break up the closed shell. Hence beryllium is not as inert as helium.
In generl this type of shell is not quite as stable as the shell in which, for a given
#, all the possible /states are filled.

Boron. After the dosing of the second shell, the fifth electron can either
be put in the 35 or in the 2p orbital. The latter is lower in energy, and it is the 2p
shell that begins to fill up, starting with boron. The configuration is (15)%(25)2(2p),
and the state is 2P,/ The last deserves a comment: if we add spin 1/2 to orbital
angular momentum 1, we may have J = 3/ 2 ot 1/2. These are split by the spin-
orbit interaction

1 1 aVis) 1 dV(r)
2mic? v 4m30" i JUT D L+ D) - S5+ 1)] dr
(19-17)

and the form of this leads to the higher f value having a higher encrgy, since the
expectation value of (1/r)[4V(r)/dr], even though no longer equel to the value
given in (17-16), is still positive, This conclusion may not hold when there are
more electrons in an unfilled shell. The ionization energy might be expected o
be somewhat smaller than that of beryllium, since the 2p state enetgy is some-
what higher than thar of the 25 orbital, because of the centrifugal bartier. The
experimental value is 8.3 eV.

Carbon. Here Z = 6, and the 2p shell continues to be filled. The con-
figuration is (15)%(29%(2p)%. The total spin may be 0 or 1 and the total orbital
angular momentum may be 2, 1, ot 0 (since we are adding two orbital angular
momenta 1). Since the wave function must be antisymmetric for the two elec-
tons outside the closed shells, a singlet stace must have even L, and a wiplet
odd L, so that there are only the possibilities 'S, 2Pz 1,0 and 'Ds. We now invoke
Hund's rule, referred to in our discussion of helium: ""The state of highest spin has
the lowest energy.” Thus we must have a 3P state. The sesult, that the state is
8P, follows from Hund's second rule, that has been abstracted from spincrbit
calculations:

1f the incomplete shell is not mote chan half filled, then the lowest level has
J = |L — 5|, its minimum value. If the shell is mote than half filled, then
the meximum f value, [ = L + 5 has the keast energy.

Since it takes six electrons to fill the 2¢ shell, we obtain J = 0. As far as the
ionization energy is concerned, we have increased Z by enc. Since the secend 2p




The Structure of Atoms 305

electron can stay “'out of the way” of the first one, by beingina different m-state, J
the repulsion between the electrons will be of less importance, and we expecta
somewhat larger binding. The experimental value is 11.5 eV.

Nitrogen. The Z = 7 atom has the configuration (L 2s2(2p?, or,
(2p)?, if, for brevity, we omit the closed shells from out description. By Hund's
rule, the spin of the ground state is the maximum value § = 3/2. ‘This is a
symmetric spin state (this is most evident in the S, = 3/2 state, for which all the
- spins must be parallel}, and hence the three filled 3¢ orbitals must each be in a
different m-state. Of the total L values of 3, 2, 1, O that can be obained by
vectorially adding three unit otbital angular momenta, the L = 3 state is clearly
" excluded. One must lock at the detailed construction of the states to find out
that the totally antisymmetric state is the L = 0 state, so that the ground state
is 4s,s. The ionization potential might be expected to be 2 little larger than that
for carbon, since Z is again increased by one, and the third electron can be put
in the thitd p orbital without significantly overlapping the other two electrons in
the 2p shell, that is, by reducing somewhat the effect of the electron-electron
repulsion. The experimenl value is 145 V.

Oxygen. (Z = 8) The configuration may be abbreviated by (2p),* and the
shell is more than half full, and it appears that the determination of the electronic
state is very complicated indeed. We can, howevert, look ar the shell in another
way: we know that when the shell is filled, that is, when the configuration is
(20)® (Z = 10}, then the total state has L = § = 0. We may thus think of oxygen
as having a closed 2p shell with two holes in it. These holes are just like “'anti-
electrons'” (though they are not positrons!} and we can Jock at possible two-hole
configurations. These will be the same as two-electron configurations, since holes
also have spin 1/2. Thus, as with carbon, the possible states consistent with the
antisymmertry of the two-fermion (two-hole) wave function are 'S, 3P, 'D, and
the four electrons that, when added to these give L = § = 0, must be in similat
states. The highest spin is § = 1, and by Hund's second rule, the angular mo-
mentum, Jor a more than half-filled shell, must be the maximum J = 2. Thus
the state is 3P, When the fourth electron is added to the 2p shell, it must be
put into an orbital with an m-value that is already occupied, so that the overlap
between two of the electrons is larger than before. Hence it is not surprising
that the ionization energy drops to the value of 13.6 eV.

Flyorine. Here Z = 9, and the configuration is {2p)°, that is, we have one
hole in a p otbital. The stace must be *Py;z since the maximum of J=1/20r3/2
must be chosen. The monotonic inctease in the ionization energy resumes, with
the value of 17.4 eV. :

Neon. With Z = 10, the 2p shell is dosed, the ground scate is a 'S, state,
and the ionization energy, continuing the monctonic trend is 21.6 eV.
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At this point, the addition of another electron requites putting it in an
orbit with a higher # value (» = 3}, and thus neon marks the end of a period in
the periodic table, as did helium. In neorn, as in helium, the first available state
into which an electron can be excited has a higher n-value, so that ic cakes quice
a lot of enetgy to pertuth the atom, Neon shares with helium the property of
being an ners gas.

The next period again has eight elements in it. First the (35) shell is filled,
with sodium {Z = 11) and magnesium (Z = 12} and then the 3p shell, which
includes, in order, aluminum (Z = 13), silicon (Z = 14), phosphorus (Z = 15),
sulphur (Z = 16), chlorine (Z = 17) and, closing the shell, argon (Z = 18).
These elements are chemically very much like the series: lithium, . . . , neon, and
the spectroscopic description of the ground states are the same. The only
difference is thar, since » = 3, the ionization energies are somewhat smaller, as
can be seen from the petiodic table at the end of the chaprer.

It might appear a little strange that the period ends wich argon, since the
{3d) shell, accommodating ten elements, remains to be filled. The fact is, that the
self-consistent potential is not of the 1,/r form, and the intrashell splitring here is
sufficiently large thar the {4y) state lies lower than the (34) state, though not by
much. Hence 2 competition develops, and in the next petiod we have (4y),
(45)%, (4334, (45)(3d)%, (4:*(3d)%, (4s)(34)5, (402 (3d)°, (45)*(34)%, (4)2(3dY,
{(4713(3d)%, (4) (34", (45)%(34)'° and then the 4p shell gets filled until the period
ends with krypton (Z = 26). The chemical properties of elements at the be-
ginning and end of this period are similar to those of elements at the beginning
and end of other periods. Thus potassium, with the single (45} eleceron, is
an alkali metal, like sodium with its single (3¢) electton outside a closed shell.
Bromine, with the configuration (45)2(34)%4p)", has a single hole in a p-shell
and thus is chemically like chiorine and flucrine. The series of elements in which
the (34} states are being filled all have rather similar chemical propetrics. The
reason for this again has to do with the deails of the self-consistent potential,
It turns out char the radii of these orbits? are somewhat smaller than those of the
{45) electrons, 5o that when the (45)% shell is filled, these electtons tend to shield
the (3d4) electrons, no matter how many there are, from outside influences. The
same effect occurs when the (4f) shell is being filled, just after the (65) shell has
been filled. The elements here are called the rare earths.

Limitations of space prevent us from 2 more detailed discussion of the
petiodic table, A few additional comments are, however, in order,

{a) There is nothing in atomic structure that limits the number of elemens.
The reason that atoms with Z % 100 do not occur naturally is that heavy nuclei
undergo spontancous fission. -If new, supetheavy (meta)stable nuclej are ever
discovered, there will presumably exist corresponding atoms, and it is expected

31t is understood that this is just a way of talking abour the peaking tendencies of
the charge distribution.
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. Ionization

z Element Configuration Term' Potential eV
1 H {15) 8 13.6

2 He {15)® % 24.6
3 Li (He) (2r) RSTES 5.4
4 Be (He)(25)2 15 9.3
5 B (He}(25)%(2p) P10 3.3
6 C (He)(25)2(2p)* Py 11.3
7 N (HE) (2!)2(2P)3 RAYTTS 14.5
8 O (He)(25)*2p)! P, 15.6
9 F (He)(25)(2p)* *Pyis 17.4
10 Ne (He){25)2(2p)¢ 15 21.6
11 Na (Ne)(3s5) 812 5.1
12 Mg (Ne)(3s)* 5 7.6
13 Al (INe)(35)3(3p) 2Py 6.0
14 s (Ne)(30)*(3p)? 7, 8.1
15 P (Ne){3s5)2(3¢)® e 11.0
16 8 (Ne)(3s)(3p) p, 10.4
17 o] (NE) (5!)1(3P)5 2Pya 13.0
18 Ar (Ne)(35)*(3p)* 15 15.8
19 K (Ar)(45) BT 4.3
20 G (Ar)(45)? S 6.1
23 Sc (Ar){45)2(34) *Dsis 6.5
22 Ti (Ac)(45)2(3d)? iR, 6.8
23 v (Ar)(45)*(34)® ABye 6.7
24 Cr (Ar)(4s)(34)® AN 6.7
25 Mn (Af)(4f)i(3d)5 AT 7.4
26 Fe {Ar){45)2(34)* 5Dy 7.9
27 Co (Ar)(4s)2{(34)7 *Fys 7.8
28 Ni {Ar)(45)3(34)° *F 7.6
29 Cu (Al’)(4!)(5J)m 251,!: 7.7
0 . Zn {(Ar) (4s)2(34)" 'S 9.4
31 Ga (Ar){4s)2(3d)10(4p) 2Py 6.0
32 Ge (AD(45)2(3dN(4p)® 3P, 8.1
33 As (Ar){4s)2 (3 {4p)* 155, 10.0
34 Se (AL (4s) 3y (4p)1 p, 9.8
.35~ Br (A} (42 (3d)e(4p)* 2Pya 11.8
36 K (Ar) (40)2(3d)10(4p)° 15 14.0
37 Kb (Kr)(3s) 212 4.2
38 St (Kr)(5s5)? 1% 5.7
39 Y (Kr)(55)2(4d) - D3 6.6
40 A (Kr)(35)2(4d)? P, 7.0

(Continued)

* 307
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308

Tonization
4 Element Configuration ‘Term! Potential ¢V
41 Nb (Kr)(5s)(4d)* Dhse 6.8
42 Mo (K){3s)(4d)® 5 7.2
43 Tc (Kr) (5s)*(4d)* 88512 Not known
44 Ru (Kr) (3s) (4)7 5F; 7.5
45 Rh (Kr){5s)(44)® A 7.7
46 Pd (Kr){4d)* 15, 8.3
47 Ag (Kr) {55y (4d e (A 7.6
48 Ccd (Kr){55)*{4d) L5 9.0
49 In (Ke){5s)*{4d)*(5p) Py 5.8
50 Sn (Kr)(55){4d)0(5¢)% 3P, 7.3
51 b (Kr) {55)%(4ad)"(5p)* 5512 8.6
52 Te (Kr) (55)x{4d)10(5¢)* 8Py 2.0
33 I (Kr){55)%4d)(5p)* Psia 10.4
54 Xe (Ke){55)2(4d)(5p)® 5o 12.1
35 Cs {Xe)(6s) AP 3.9
56 Ba  {(Xe)(65)? 15 5.2
57 La {Xe)(6s)X5d) *Dasz 5.6
58 Ce (Xe)(65)2(47)(5d) 3H, 6.9
59 Pr (Xe) (61)"'(4_]‘)3 Hasa 5.8
60 2| Nd  (Xe)(6r)*(4f)" h 6.3
61 El Pm (Xe)(6r)4f)° o Not known
62 ? Sm (Xe)(6s)2(4)¢ By 5.6
63 E Eu (Xe) (6s)3(4f) 52 5.7
64 ~1 Gd (Xe)(65)2(4)7(54) . 6.2
63 Bl (Xe)o)dp® *Hiwss 6.7
66 g| Dy (Xe)(Gs)2 (4 5Fy 6.8
67 £ He (Xe)(6s)2 (4 ierz  Not known
68 3| Er (Xe) (6s)2 4712 H, Not known
69 Tm (Xe) (Gs)2(4)™ L T Not known
70 Yb (Xe) (6s)2 (4 % 6.2
71 Lu (Xe) (6.[) g(4f)u(5dr) © Dy 5.0
72 Hf (Xe) (60414542 Py 5.5
73 Ta (Xe) (60241 )(54)? 1Fy2 7.9
74 W (Xe)(60(4HM(5d)4 D, 8.0
75 Re (Xe) (65)H4)19(54)° LA 7.9
76 Os (Xe) (61)2(4f4(5d)° oDy 8.7
77 Ir (Xe) (612 (4N (54)° 1For2 9.2
78 Pt (Xe)(6s){afye(sd)* D, 9.0
7% Au (Xe)(Gs)(4NMH(5) Sz 9.2
80 Hg (e G244 (5d) 15 10.4
81 T (Xe) (6513 (4454 (6p) P, 6.1 ‘

' (Continued}
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PERIODIC TABLE—(continued)

Ionization
z Element Configuration Term! Potential eV
82 Fb {Xe}(GsYHAH(5IN(6p)*? 3Py 7.4
83 Bi {Xe)(6s)H4F )M (540 (6p)° 155 7.3
84 Po (e} (6524 (54 {(6p)* P, 8.4
835 At (Xe) (G HAf P50 6p)* 2Pase Not known
86 Rn (Xe)GNHAF YA (5APH6p)* 15 10.7
a7 Fr (Rn)(75) Not known
88 Ra (Rn)(75)* 50 5.3
89 Ac (Rn)(75)*(6) 2Dy1e 6.9
90 Th  (Ro){7s)*ed) iF,
a1 Pa (Rn)(75)2(5)%(64) Kz
92 u (Rn)(75)%(5)*(64) g
93 Np  (Rm)(79)45))%6d) SLiuz
94 g| Pu {Rn)(75)2(5/)¢ R
95 -g Am {Rn) (71)2(5f)7 LAY
96 E| Cm  (Ro)(7)*(5()7(64) Dy
97 <| B (Ro)EOUSA® SHisie
98 Cf (Rn) (723 g
90 Es {Rn) {725 52
100 Fm (Ro){7n)2(5/)* 3H;
101 Md {Rn)(7s)2(5)"* ®Prix
102 | No  (Ro)(79)256™ 15

L Term designation is equivalent to spectroscopic description.

that their structure will conform to the prediction of the building-up approach
cutlined in this chapter. :

(b) We went to a great deal of trouble to specify the §, L, and J quantum
numbers of the ground states of the vatious elements. The reason for doing this
is thar in spectroscopy, the quantum numbers ate of particular interest because
of the selection rules

AS =0
“ AL = 1
AJ =0, %1 (no 0 — 0) : (19-18)

that will be derived latet, and that may then be used to determine the quancum
numbers of the excited states. The spectroscopy of atoms, once we get beyond
hydrogen and helium, is very complicated. Consider, as a relatively simple
example, the first few states of carbon, which are formed from different con-
figurations of the two electrons that lie outside the closed shell in the (2p)®



310 Quantum Physics

arbitals. As. already pointed out, the possible states are 18, #; 1,0 and 'D;. The
P, state lies fowest, but the other states are still there. The first excited states
mzy be described by the orbirals (2p)(3:). Here S = 0 or 1, but L = 1 only.
Since the n-values are different, the exclusion principle does not restrict the
states in any way, and all of the states 1Py, *P; 1 ¢ ate possible, while the excited
states that arise from the orbirals (2p)(3) can have § = 0, 1and L = 2, 1, 0,
leading to all the states 1Dy, Py, 18, *Dy.2.1, P2,1,0, and 35:. Even with the re-
strictions provided by the selection rules, there are numerous transitions.
Needless to say, the ordering of these levels reptesents a delicate balance be-
tween various competing effects, and the prediction of the more complex spectta
is very difficule.* That task is not teally of interest to us, since the main point
thet we want to meake is that quantum mechanics provides a qualitative, and
sometimes quantitative, detailed explanation of the chemical properties of
atoms and of their spectra, without assuming an interaction other than the
electromagnetic intetaction between charged particles. We shall have occasion
to return to the topic of spectra,

Problems

1. List the spectroscopic states {in the form *$1L;) that can arise from
combining

$=1/2,L=1%

§=2L=1
SHi=1/2%=1,L=4
Si=1,85%=1L=23

Si=1/2,85=1/2,L=2

Which states are excluded, among the two-spin questions, if the particles are
identical?

2. Consider the following states
\D, *P, 1F, 3G, ™D, *H
What ate the possible J values associated with each?

3. Consider the states 112, 3P, 35, 3G, 5P, 8S. Given that in each one the state
consists of two identical particles in their largest possible spin state, which of the
states are disallowed by the spin-statistics theorem?

* The spectroscopic labeljng that we have used has its limitations. Behind its validicy
lies the physical picture that the total orbital and spin angular momenta are separately
conserved, except for the perturbation caused by spin-otbit coupling. This coupling is
stall for the light elements, but for large Z it cannot be treated as a perturbation. There it is
betcer to couple the /and s for each electron to form a j, and then consider the jj coupting.
Derailed consideration of this is beyond the scope of this book.
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4. Use Hund's rules to find the spectroscopic description of the ground
states of the following atoms:

N(Z = 7, K(Z = 19), $c(Z = 21}, Co(Z = 27).
Figure our the electtonic configurations as fat as you ate able to.

5. List the possible spectroscopic states that can arise in the following
electronic configurations: (152, (2p)%, (2p)% (290", (3d)?, (2p)%(31), (34)% Take
into account the exclusion principle.

. (Nose. Remember that if all the spins ot otbital angular momenta ate pointing in
the same ditection, then the state is symmettic; also remember about holes in
“ closed shells.)

6. Plot the ionization potentials given in the periodic table against Z,
‘Obsetve the peaks indicating the shell structure of the acoms.
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chapter 20

Molecules

Just as atoms are aggregates of electrons and a single nucleus, so molecules
are aggregates of electrons and several nuclei, Molecules in their lowest energy
srate are stable, that s, it takes a certain amount of energy to dissociate them into
their components. Since dissociation of molecules into atoms is the most comn-
mon occurrence when epough energy is transferred to the system, we may call
molecules bound states of atoms, although we shall see that this description
hides much of what makes up the scructute of molecules. The purpose of this
chapter, and the next, is to show that quantum mechanics is successful in
describing the properties and behavior of molecules.

The simplest molecules are those that involve two nuclei, the diatomic
molecules. Even they are mote complex systems than atoms because, after the
center of mass is fixed in space, the nuclei are stilt free to move. This leads to an
increase in the number of degrees of freedom. Thus for the simplest of all mole-
cules, the Hs+ molecule, consisting of two protons and one electron, thete are
still six degrees of freedom left, three for the clectron and three for cthe relative
motion of the two protons. As with atoms, a frontal attack on the problem of the
dynamics of molecules, that is, a numerical solution of the Schrodinger equa-
tion in many dimensions is possible. For out purposcs cruder but more physical
approaches will be more enlightening.

Insight into the dynamics of molecules can be obtained from use of the
face that nuclei are 2 great deal more massive than electrons (M/m. > 10%) and
thus their motion is a great deal slower, One may view the motion of the elec-
trons as if the nuclei were fixed in space. The motion of the nuclei, on the other
hand, is in an average field due to the electrons. For a given set of puclear
coordinates, there will be a Hamilronian for the electrons. The lowest eigenvalue
of that Hamiltonian will depend on these coordinates, and its minimum value
will determine the positions of the nuclei. This picrure must be modified a litde
for nuclei that are not infinitely massive, since they can also move. Their motion
depends on the electrons, but they only “see” an avetage charge disuribution
due to the rapid motion of the electrons, and to first approximation, they move
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in a harmonic potential about the locacions determined by the minimum in the
energy of the electrons.

We can describe the situation mathemaucally as follows. The Schrodinger
equation describing the nuclei and the electrons has the form

[Tz + T, + Vi{r.R)] ¥(r,R) = E¥{r,R) (20-1)

where Tg is the sum of the kinetic energies of the nuclei, T, is the sum of the
kinezic energies of the electrons, and V{r,K) is the potential energy, which con-
sists of the Coulomb attraction of the electrons to the nuclei, the electton-
electron repulsions, and the repulsion among the nuclei. Consider first the
Hamiltonian desctibing the electronic motion for a set of fixed {R}

Hy =T, + V(rR) {20-2)
The eigenvalue problem can, in ptinciple, be solved
[T, + V(r.R)] w(r.R) = &(R) alr,R) {20-3)

Both the eigenvalues and the eigenfunctions depend on the values of R, which
here play the role of fixed parameters. Since the u,(r,R) form = complete set, we
may expand ¥(r R} in texms of them

¥(r,R) = Z $m(R) un(r,R) (20-4)

To determine the coefficients ¢...(R) we inserc this into (20-1), and obtain, using
(20-3), the equation

Tr Z ¢m(R) ﬂm(f,R) + E fm(R) ¢M(R) "n(va) =E Z d’m(R) ”m(f:R)

(20-5)
The first term will consist of terms of the type
5 :
(— 2, Vit .- ) 2 9a(R) #nlr.R) = 2 [Tadu(R)] an(r.R)
- z—Ml ): V2, 6lR) Vi, #a(r.R) —
-3 Ml E.,. Su(R) Tk, #n(r.R) — (206)

As a first approximation we peglect the second and third terms on the right side
of this equation, that is, we assume that the eigenfunctions #w(r,R)} are slowly
varying functions of the nuclear coordinates R, at least in the region of the solu-
tions for the minimum electronic energy, Ry defined by :

Ve enlB)  gimp = 0 {20-7)
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This approximation

Te X #n(R) #2(r,R) ~ 2. [Tedwu(B)] #n(r.R) {20-8)
_ is the firse step in 2 sequence of approximations bjr which variations with respect
0 R can be taken into account. The procedure was developed by Born and

Oppenheimer, and the first approximation is generally 2 good one, If we now
take the scalar product with #.(r.R), and use orchonormality

fII d‘ar.- ﬂ:(f,R) #m(f.R) = 5mn (20'9)

then (20-5), together with (20-8), reduces ta
TE“’M(R) + EM(R) ¢M(R) = E¢m(R) (20'10)

This is just the Schrodinger equation for the nuclear motion in a potential €,(R}),
the electronic energy. For R close to the minimum points Ro, we may expand

1 0%, '
en(R) = enl(Ro) + E(R - Ro}? ( R )ﬂ +... {20-11)

Tf only the first two terms ate impottant the nuclei move in harmonic oscillator
wells. Thus the nuclei will undergo vibrational motion! They will also undergo
sotational motion, since T involves angular coordinates. We may estimate the
magnitudes of the various enezgies.

Let us assume that the size of the molecule is of order 4. Then, by the
uncertainty principle, the electronic energy is of order

B AL
e — (n) (20-12)
2m \&

The frequency of the vibrational motion of the nudleus is, according to (20-11),
given by the formula :

Mo = a:g) {20-13)
Given the potential energy in (20-12}, a dimensional argument gives us
e W
OR* T mat
that is,
142
w 2 (%)f ;ﬁ; (20-14)

1 The motion will be somgwhat more complicated if we do nor limit ourselves to a
two-term expansion of (20-11) but it will still kave che qualitative properties that we are
discussing.
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Thus the ratio of the vibrational energy of the nuclei to the electronic energy is

Eviv Fuw m 12
; gﬁi/ng I, {20-15)

The molecule can also rotate about the center of mass. Typically

ki
E = = = .. 20-1
ot 21 M2 M (20-16)

Thus, as far as molecalar structyre is concerned, one may neglect the rotational
and vibrational degrees of freedom. Nevertheless rotational and vibrational
energy levels will exist, and in molecular spectréscopy there will be:

(a) Electronic transiions. H -the dimensions of the molecule are of the
order of 1 A, that is,

2h
e — (2017}
mea
then
. k2. mctot
hv = 2xh RPN ~22
)Y 2ma? 8
that is,
16x A -
A X P e 137 X 05 A
& moo
~ 3500 A ' (20-18)

Thus the radiation emitted in electtonic transitions lies in the ultraviolet.

(b) Vibrational transisions. These are transitions berween different levels
in the approximate harmonic oscillator well. The typical energies will be of the
order of (m/M)M? ¢, that is, the wavelengths will be of the order of (M/m)"* ~350
times larger. The tange of wavelengths, ~2 — 3 X 107 cm, lies in the infrared
region.

(¢) The rotational spectra will be characterized by wavelengths M/m ~
10% — 10* times larger cthan che electronic optical wavelengths, and » ~.0.1 — 1
cm is typical of the microwave region.

To see what form &(R) can take, let us turn to the simplest molecule of all,
the H,* ion. After separating out the cencer of mass of the two nuclei (we ignore
the electron in doing this), we are lefc with the energy eigenvalue equation

( F 1 . ﬁ? . ‘,9. ez z gﬂ
e - v — - - —— -+ — —E}¥ =
2" " 2m I VRS CIAE E) «R) =0

{(20-19)
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eV

_EZ Coulomb repulsion
R\ between protons

Rq

E\Equilibrium

separation
—136— ——_—————————— = =

Electronic
energy

Fig. 20-1, Contributions to "'nuclear potential.” The Coulomb repulsion and
the electronic enetgy combine to give a curve with a minimum at Ro.

The frst term represents the kinetic energy of the protons with ~.
Mg M
M=—"E_-=F {20-20)
Mp+ Mp 2

the reduced mass of the two-proton system. The second is the kinetic energy of
the electron. The next two terms represent the attraction between the electron
and the two protens located at R/2 and —R/2, and the last term represents the
repulsion between the two protons separated by a distance R = |R|. The
qualitative fearures of the solution with'R held fixed, and the proton kinetic
energy term absent are shown in Fig. 20-1. For R very large, the electron will be
bound to one of the protons, and the energy of the system is —13.6 eV, the
energy of a single hydrogen arom. When R — 0, and we leave out the proton-
proton repulsion, the electron will be bound to a Z = 2 nucleus, and the binding
energy will be —13.6 Z? = —34.4 eV. The electronic energy, as a function of R,
interpolates smoothly berween these points. When the energy or repulsion
¢%/R is added to this, the curve &(R) results. This curve has a minimum for the
Hy* molecule. A minimum does not always exist, so that some atoms do not
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form molecules, as we shall soon see. The electronic eigenvalue equation, which
has the form anticipated in {20-3),

HaeR) < ( bt e __ ¢ ) R
wa(r.R) = m |r — R/2| lr + R/2| R salrR)
= g(R) #l(r,R) {20-21)

can actually be solved in elliptical coordinares, bur we will get more insight from
using the variational principle, with trial wave functions that reflect some physical
intuition about the system.

A reasonable trial wave function is a linear combination of

L S
$i(eR) = o) B (20-22)
and

1 \u2 )
Vot R) = (:‘03) g Ir AR/ fan (20-23)

representing the electron bound to one or the other proton. Since the Hamil-
tonian is symmetric about refiections in the origin (p. — —por— -1, R —
—R), we may take as trial wave functions even and odd combinations of these®

¥o(rR) = CH{R: (R} + ¥a(r,R)]
¥t R} = C(RI(LR) — ¢:(r.R)] (20-24)

The normalization factors are given by

3
i = (1 = dal g = )
=+

2+ 2\[‘{3? \[J](I',R) #Ig(l',R) (20-25)

The integral appearing above is called the orerlap integral, and it can be calcu-
lated. The calculation of

SR} = f #r (v R) ¢:(rR)

= i]d% (—IP—R/2 o =T+ R/2 f0
ran"

1 Y —Rl/e
=— f Ayt ¢ RIfe e (20-26)
0

¢ The labeling is historical: "“g"' stands for “gerade,”” which means even in German,
and "# for "ungerade,” odd.
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s straightfotward, though tedious. The result is

SR = (1 + X + —Rz—) P {20-27)
21 3402
The expectation value of Hy i the two states is
1
Hyu= I = SR (g = P2 | Hy|dr 3= 1)
1 .
= 201 =SR] {40 HolWn )+ (ba| Hole) == (| Holwad &= (al ¥ )]
Al Holda) = | Hol¥s)
= e (20-28)

whete use has been made of the symmetry under R — —R. The two terms in
the numerator can be calculated:

i) = [ eiem (L2 - 15 e
1w = R\ om ~ Jr—R/2l |+ R/2l R
X yu(rR)
¢ l\h(l'-ﬂ) 12
= S| Jy 0-2
The first term is just the energy of a single hydrogen atom E; = —13.6 eV, the

second term is the proton-proton repulsion, and the third term is the electrostatic
potential energy due to the electron charge distribution about one proton being
attracted to the other proton. The last integral can be evaluated, so that finally

eﬁ R —2R/a0
Wi Hlny = B+ (1t +—]e (20-30)
R dp
Similarly
2 2
i) = [ st (5 = ) e

s, BER) V(e R)
[ S

ez
= (El + E) S(R) — ¢ r + R/2| (20-31}

Here the lasf tetm is the exchange integral, which can also be evaluared, yielding

#F:(l',R) ng(l',n) - 2_2 (
|r + R/2| a

e | dr

R
1+ f) ek (20-32)

]

When all of this is pur together, the resulting enetgies can be calculated as
functions of R. Figure 20-2 shows the calculated energies.
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Fig. 20-2, Results of variational calculation for Hg*.

The exact solution, which according to the variational principle must lie
below the curves obrained, differs little from the minimum. In our approxima-
tion, we see that the even sclution yiclds binding, while the odd one does not.?
"The difference between the even and the odd solutions is that in the former, the
electron has a high probability of being located between the two protons, where
the arteactive contribution is maximized; fot the odd solution, which has a node
midway between the protons, the electron tends to be excluded from that region.

The experimentz] separation between che protons is 1.06 A, and the binding
energy is — 2.8 eV. The calculations outlined above lead to a separation of 1.3A
and a binding energy of —1.76 V. Thus our wave function is not as compact as
it should be. The reason is that when R is small, the wave function should
approach that of a Het ion, which (20-24) dces not. One could improve the cal-
culation by introducing an effective charge for the proton and minimizing
{Hq ) with respect to thar parameter in addition to R, as in our illustration in-
volving the helium atom. Since we are more interested in a qualitative under-
standing of the problem than in improving the variational calculation, we do not
pursue this idea.

3 One might wotry that the ttue €(R), lying below the (HY, = Eu(R) curve, sill dips
down and gives a weaker bound state. Detiled calculations show that it does not.
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The orbitals that we have considered do not depend on the azimuthal angle
about the axis of the molecule. Since the Hamiltonian is invatiant under rotations
about the axis, we may classify the solutions by the angular momentum com-
ponent along the axis. If we choose R to define the z-axis, our eigenstates will
be simultancous eigenstates of L,. The sclutions will, in general, have the
dependence ¢ with m = 0, 1, &2, . ... These are labeled o, 7, 8, . . . in
analogy with §, P, D, . . .. There is also the labeling "g” and “u” which is
applicable to all diaromic molecules for which the atoms are the same (homo-
nuclear molecules). Thus in our cxample the ground state could be labeled
L5, and the antisymmetric state could be labeled 15, *, the asterisk indicating
that the state is unbound. Excited states of the H;* molecule may be formed
with higher orbitals.

We will not deal with the rotational and vibrational degrees of freedom of
the molecule except to note their roles in the two topics that we discuss next.
First we will be concerned with the effect of the Pauli Exclusion Principle on
homonuclear malecules. Consider, for example, the Hp molecule for which the
two nuclei are identical and each has spin 1/2. Thus the total wave function must
be antisymmetric under the interchange of the two nuclei. The two protons in
this example may be in the antisymmetric spin singlet ($ = 0) state, in which

I case the rotational state must be described by a symmetric function, so that the

‘apgular momentum is even. If the two protons are in the symmetric spin triplet
(S = 1) state, the angular momentum of rotation must be odd. In a gas, collisions
among the H, molecules will randomize the distribution of spin states, and
assuming that they have equal probahilicy, the number of molecules in a given
spin state will be proportional to the degeneracy (25 + 1). Thus chere will be
three times as many odd L molecules as there are even L Hy molecules in the gas
This will manifest itself in the intensity of the spectral lines associated with the
transitions berween rotational levels. More generally, if each nucleus has spin 1.
then the spin states 21, 21 — 2,21 — 4, ... and the spinstates 21 — 1,2/ — 3, ..,
will have opposite symmetry. If, for example, I is an integer, then the first
scries of spin states will be associated with even orbital angular momentum,
since the nuclei are bosons in this case. Their total number is

) .
S faar - 2+ 1] = e+ i1 - L
=0
=+ 1UI+1) (20-33)
whereas the zemaining ’
(T4 12— I+ DI+ 1) = @I+ 1)1 {20-34)

states will be zssociated with odd orbital angular momentum. Thus for integral I,
the ratio of even L. to odd L intensities for a given L is (I + 1)/I. For fermions
that ratio is inverted.
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To a good approximation, the energies of the rotational states are

_ HLL+1)

o (20-35)

L
where 3 is the moment of inertia of the homonuclear molecule under considera-
tion. Transitions between adjacent L values (to conform with the selection rule
AL = =1, still to be derived) yield radiation with frequencies

wll 41> L) ML+ 1)L+ 2) — LIL+1)]

3
23

%(L + 1) (20-36)

From the study of rotational spectra one can idencify the rotational levels and
find their L values. The intensities then give a way of discriminating between
even and odd spin. Historically, a study of the rotational spectrum of the N
molecule Jed to the conclusion that its spin was even. This could not be under-
stood on the basis of a nuclear model in which the nitrogen nucleus consisted
of fourteen protons and seven electrons; such a nucleus would have odd half-
integral spin. ‘The discovery of the neutron, and the realization that the nitrogen
nucleus consisted of seven protons and seven neutrons removed the difficuley.

The existence of the hierarchy of excitation energies, rotational, vibra-
tional, and electronic manifests irself in the form of the specific heat at constant
volume as a function of temperature, We take from statistical mechanics the
following facts.

(a) ‘The specific heat at constant volume is given by

F
| Cv = Ny >T E(T) (20-37)

where E(T) is the average energy of a molecule in equilibrium at temperature T,
and Ny is Avogadro’s number. : )
(b) ‘The average enctgy can be calculated from the Belezmann distribution

f AEEg(F) e—E,ftT/ f dEg(E) eEAT

_ 0 —E/&T [ —E/T
= b(l/éT)]dEg(E} ] / dEg(E) e

o
ﬁsza‘

E(N)

I

log f dEg(E) ¢ F/HT (20-38)

where g(E) is the degeneracy of states with energy E. ‘
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(c) The average energy can be written as 2 sum of contributions from
independent degrees of freedom, so that we can write

E(T) = Eurans(T) + Exot(T) + Euis(T) + . .. (20-39)
For the wanslational contribution, where E is the kinetic energy, we have*
—B/ET d'p —P/2MET
deg(E) ¢ = (*2;5; e {20-40)
so that
f AEg(E) ¢7FT = i (20-41)

as can be seen from dimensional considerations. Thus (20-38) yields

d o
= No—— | £T? Ty
Cv = No oT (E aTlo‘gC )

= 2 N
2

R (20-42)

[ R

where R = Ny == 1.98 calorie/mole K°. This is just the Dulong-Perit result,
For the totational contribution we have

f dRg(E) e AT 5 37 g, (2L + 1) ¢ TWLEADANT (20-43)

where g, is the spin multiplicity corresponding to the given L, and (2L + 1) is
the usual degeneracy corresponding to a given value of L. For the Hz molecule
we have the spedial situation mentioned before: the existence of para- and
ortho-hydrogen, for which the nuclei ate in the spin states § = G and § = 1
respectively.

For para-hydrogen, L is restricted to the even values, L. = 0, 2, 4, . . . and
g = 1; for ortho-hydrogen, Lisodd, L = 1, 3, 5, .. . and g, = 3. At low tem-
peratures—and here “low” depends on the moment of inettia, so that for H,
the relevant number is®

e 84.8° K o (20-44)

* For a discussion of the degeneracy of states applicable to free motion, see Chapter 22,
Section C.

¢ The moment of inertia can be determined from the spacing in rotational spectra.
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—the L = 0 scate will be primarily occupied, that is, the gas will consist of para-
hydrogen.® At room remperatute the difference berween even and odd L's
becomes insignificant, and the ratio is determined by the ratio of the g, that is,
itis 3:1 ortho- to para-hydrogen.

In the rest of the discussion we shall, for breviry, ignore the complication
of the two forms of molecules. At temperatutes where the rotrional degrees of
freedom become excited we have

ﬁg/fzﬁz (ZL + 1) L(L + 1) e—ﬂ*L(L'i'l)fz:ﬁT
= L
Erat = S GL+ 1 —PTEAD/23T (20-45)
L

This can be evaluated numerically. At high remperatures, the level-spadng is 50
small, compared to £T, that we can replace the sum by an integral, and use
(20-38). We have

f dEg(E) ¢ T ~ f Al 2 e~ T (20-46)
so that, using (20-38) and {20-37) we get, for large T,
(Cv)rot = EN o (Fil c”T) =R (20-47)
Voo = &N oz ot 8 =

At higher temperatutes the vibrational states can become excited. The
harmonic oscillator potential in which the nucleus moves need not be sym-
metric. If the line connecting the two puclei is taken in the z-direction, itis
plausible that the potencial walls will be steepet in the x- and y-ditection than in
the z-direction and thus in the expression for the energy

E = fwdm + 3 + folm, + ) + fodn + 2) (20-48)

the first excitation will be from the ground state B = 3fws + Lo, + 3o, to
El = Eo + ﬁw,,. Thl.'LS

E o e—Eo,a’ET + E e-Eu’iT
e—EnfkT+ E—Eu’lT

R
T e

~E (1 4 % e—nu,/kT) (1 _ e-,.m.,qr)
0
~ Fy + Fia, e /4T {20-49)

6 Actually transitions between the ottho- and pata-states are very siow, so that cooling
the gas is not enough to make pata-hydrogen. In practice cne uses a catalyst.
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Fig. 20-3. Specific heat of H gas as a function of tempetature.
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For H; the vibrational effects do not set in until 600°K (Fig. 20-3). On the other
hand, for Cls, fis, has quite 2 Jow value, and at rocm temperarute, the contribu-
tion of the first vibrational level is ~ 0.5 R. In general w,, «, are quite a bit
lazger than , for diatomic molecules, and therefore the high energy contribution
of the vibrational excirations computed from

[ 2(E) BT qp 3 et /DAT
~ [dﬂ ¢ —ha(n+1/2)/kT o~ T (20_51)

is R as for the rotational levels. This is shown in Fig. 20-3 showing Cy for H,.
The clectronic levels only contribure at excremely high energies.
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Problems

1. In HCl a number of absorption lines with wave numbets (in cm™)
83.03, 103.73, 124.30, 145.03, 165.51, 185.86 have been observed. Are these
vibtational or rotational transitions? If the former, what is the characteristic
frequency? If the latter, what J values do they, correspond to, and what is the
moment of inettia of HCI? In that case, estimate the separation between the
nuclei, (In radiation the quantum numbers change by one uait.)

2. Wha is the ratio of the number of HCl molecules in a state with | = 10
to the number in 2 state with J = 0, if the gas of molecules is at a temperature
of 300° K? :

3. The frequency of vibration of the CO molecule in its lowest state is
vo= 2 X 1049 Hz. What is che wavelength of the radiation emitted in the Jowest
vibational excitation? What is the probability that the first vibrational state is
excited, relative to the probability that CO is in its vibrational ground state,
when the temperacure is 300° K?

4. Consider the vibtational and rotational energy of a molecule in the
approximation
1 JU+n#
EsR) = - AR — 2 EAY S Nl
(R 5 (. Ry + 2R

- Find the position where the energy is a minimum. If the moment of inertia of
the molecule is calculated using the new internuclear separation, show that the
rotational energy czn be written in the form

Er= AJ(J+ 1)+ BJJ+ DP+ ...
Determine the cocfficients A and B (the latter is the effect of centrifugal
distortion).

References

Sevetal elementary books that treat the martters in this chaprer are listed at the
end of Chapter 21.
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Molecular Structure

In this-chapter we discuss, albeit only qualitatively, how the electronic
structure of molecules determines their shapes and other propertics. We begin
with the Hs molecile, and discuss it in some detail, because there are two electrons
{in contrast 1o the Hy' molecule) and the exclusion principle and electron spin
considerations make their first appearance. Both here, and ia the rest of the
chaptet, the auclear motion will be neglecred.

The nuclei (protons) will be labeled A, Band the two electrons "1 and 2"
(Fig. 21-1). The Hamiltonian has the form

2 2

¢ ¢
H=H+H+—+ — (21-1)
¥ig Rar
where
2 2 2 R
o= _ (=1,2) (21-2)
2m fai i

depends only on the coordinates of the electron i telative to the nudei. We will
again computre an upper bound to E(R.p) by constructing the expectation vatue
of H with a trial wave function. Since
2
~ €

Hi=H,+— (21-3)
Rar ‘

Fig. 21-1, Coordinate labels in the discussion of the Hg molecule.
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are just Hamilconians for the Hy* molecule (Eq. 20-21) it is suggestive to take as
our trial wave function a product of two lig, functions (Eq. 20-24) for the Hs+
molecule:

Yolres) = Wa(r) + $ary)] [Yalrs + ¥alrs)] Xs;ngle( {21-4)

1
2[1 + $(Raz))
The electron spin state is a singlet, since the spatial part of the wave function is
taken 1o be symmetric. In this trial wave function, each electran is associared with
both. protors, that is, the trial wave function is said to be a product of molecular
orbitals. The description in terms of molecular orbitals is sometimes called the
MO method.

The calculation of (| H|¥, ) yields

- et o ¢? ¢’ é
(ul(m i)+ () i
2 ) eZ
%)_ﬁ;
2

— \(’9> (21-5)

fiz

e(Rap) + (Rsn) + (‘Pa

¢
g bd

v]
2e{Rup) — ﬁ_g + ('t"e
A

where e(Rys) is the energy of the Hy™ molecule calculated in Chapter 20. The
first ordet electron-electron repulsion contribution can also be calculated, and
when the total energy so computed is minimized with respect to the separation
Run, it is found that the binding energy and internuclear separation are given by

Ep = —2.68¢eV
R= 085 A (21-6)
The experimental values are
E,= —475¢eV
R= 0744 | (21-7)

Evidently the approximation is not a very good one, We noted in our discussion
of the Hat molecule that the trial wave functions {the MO’s) are inaccurate for
small proton-proton separations, and the fact that the MO's are too spread out in
space shows up in the numbers above. The tial wave function also has some
undesirahle featutes for large Rap. The product in (21-4) may be rewritten in the
form :

[alrs) + gulrd][(alr) + $ulr]

= [alrs) Yulrs) + ¥alry) ¥ala)] + [ale) walrs) + $alr:) %(h)]
: (21-8)
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"The first term is called an “ionic’' term, since it describes both electrons bound to
one proton or the other, The second term, the “covalent™ term, is 2 description
in terms of linear combinations of atomic orbitals (LCAQ). Qur trial wave
function thus implies, since the two terms enter with equal weight, that for
large R4z the molecule is as likely to dissociate into the ions H¥ and H™, as it is
into two hydrogen atoms, and this is pacently false.

The last difficulty can be avoided with the use of the Valence Bond (also
called Heitler-Londen) method, in which linear combinations of atomic otbitals
are used. The singlet wave function used as & trial wave function in the varia-
tional principle is taken to be

1

12
m} [falrr) $a(rs) + Palrs) $a0r)] Xinger  (21-9)

() = {
where, as befate, the 4 {r.) are hydrogenic wave functions for the i-th electron
about proton A. We could, in principle, add a triplet tetm to out variational
trial wave funcrion. However, a triplet wave function must be spatially anti-
symmetric and has low probability for the clectrons being located in the region
between the protons. We saw ia out discussion of the Hy™ molecule thart just this
configuration led to the lowest energy. Although it is not immediately obvious
that the attraction is still largest in this configuration when thete are swo elec-
trons that fepel each other in the system, it is in fact so. The tesults of 2 varia-
tional calculation with the VB trial wave function is

Ey = —3.14eV

R 087 A (21-10)

This is not a significant improvement over the MO results, for the simple reason
that the inadequacy of the trial wave functions for small Raip carries more
weight. There should be no question about the quantitative successes of quan- |
tum mechanics in molecufar physics. More sophisticated trial wave functions
have fo be used; for example, a 50-term trial wave function yields complete
agreement with observations for the H; molecule, but it does not, as the MO
and VB fanctions do, give us something of a qualitative feeling of what goes on
between the atoms. In what follows, we will explore the relevance of these
approaches to & qualirative understanding of some aspects of chemistry.

- The expectation value of H for the H: molecule in the VB approach has
the following schematic form

, . .
WiH\W) = m arbe: + darde | H|Yaboe + duabs)

’ 2 2 z

= 14:51(%;1-&3; (T1+T2— S

YAl YAz g1 B2
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L4 e )
12 Rus
where T; is the kinetic enetgy of the i-th electron, and since

2
(T1 - 8_) ipAl = El”’Al

a1

Yawe: + \DAZWBL)

and so forth, this can be simplified to

! ((\b#, ZE_ig_ i+_€2_+_ei1p¢>
14+ & iadel rB1 fa2 iz Raz! o
¢ ¢ ¢t e
+ (\h;‘h}z 2B, —— — —— + — + = IPAZ\Pm))
ra2 ra1 1y Run

1

)

¥BL

- (2E +i)(1+sﬁ)—2‘<\&
= 1+ §2 I Ras ¢ Al
‘ 1 2 2
— 'lfm) + e’ff——-—-—'h ':""“ \
+ e f f =PMM%:%:¢M] ' (21-11)

In obtaining this, liberal use has been made of symmetry. The terms that can
make this expression more negative are
ll’m)

(ol e 5
Al ¥a1 an 148 AL

The former is just the atraction of che electron cloud about one proton to the
othet proton; the second is the overlap of the two electrons {weighted with
1/r42). If this can be large, there will be binding. The two electrons can only
overlap significantly, howeves, if their spins are antipatallel; this is a consequence
of the exclusion principle. The region of overlap is between the two nuclei, and
there the attraction to the nuclei generally overcomes the electrostatic repulsion
between the electrons.

In the MO picture, too, it is an overlap term—-the lasc term in (20-31)—
that is crucial to honding, and again, bonding occurs because the electron
charge distribution is large between the nuclei. Thus, although here the orbitals
belong to the whole molecule rathet than to individual atoms, the physical
reason for bonding is the same.

We will discuss some molecules in terms of these two approaches to the
description of the electronic charge distribution. An important simplification
oceurs because we really do not need to take all electrons ince account. In the
‘construction of orbitals, be it valence or molecutar, only the ourermost electrons,

_ 2325 (\!’Al

1

FAl

1
TB1
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(Do - ()o

Atom with
paired electrons (2

GC

Fig. 21-2. [lustration of why paired electrons do nort give rise to bonding. (#) If
parallel electrons exchange, wave function is spatially antisymmetric. () If anti-
parallel electrons exchange, one term in the wave funcrion has electrons in the same
spin state, which may require promotion to a higher energy orbital.

+
=

(b)

not in closed shells, that is, the so-called valence electrons have a chance to con-
tribute to the bending. The inner electrons, being closer to the nucleus, ate less
affected by the presence of anpthet atom in the vicinity.! Furthermote, not all
valence electrons contribute equally: if two electrons are in a spin 0 state—we
call them paired electrons—rthey will nor géve rise to bonding. To see why this is so,
consider what happens when an atom with a single valence electron is brought
neat am atom with two paired electrons. There are two cases to be considered
(Fig. 21-2). -

{a) If the two electrons that are parailel exchange (i.e., are put into a form
such as (21-9) with a & sign berween the terms) then they must be in a triplet
state, and hence the spatial wave function of this pair must be antisymmerric.
This reduces the ovetlap, and it turns out that the exchange integral gives a
tepulsive contribution to the energy.

(b) When the two electrans that are antiparallel exchange, then one atom
finds itself some of the time with two electrons in the same spin state. The

It may happen in atoms that even the valence electrons are rather close to the
nucleus. This is the case for the rare earths. A consequence of the fact char the outer electrons
in 54 and 4 shells lie close in is that the rare earths are chemically less active than the wansi-
don metals {Z ~ 20 — 30).
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original atamic state will frequently no longer be 2 passible one, and one of the
electrons will have to be promoted into another atomic orbital. Sometimes this
may cost very little energy, but usualty this is not the case, and again bonding is
not achieved. Chomical activity depends on the presence of unpaired onter eloctrons. An
example of this is the nonexistence of the H-He molecule. In He we have two
electrons in the 15 state; promotion of one of them into a 2s state costs 2 lot of
energy. It is for this reason that the atoms for which the outer shells are closed
are iners. Not all unpaired electrons are of equal significance. As noted before,
the unpaired 4- and f-electrons in the wansition elements tend to be close to the
nucleus, and hence inactive. Thus, mainly s- and p-electrons in the outer shells
contribute to chemical activity. The paiting effect is also responsible for what is
called the “saruration of chemical binding forces”: once two unpaired electrons

(@) (2]

+

{c} d}

Fig. 21-3. Picrorial representation of shapes of (4) the sorbital, (8} the pe(Y1d), .

(&) the p{Yn — Y1 1), and (d) the £:{Yu + Yi.o) orbitals. The signs refer o
the signs of the wave function in the given region.
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from different atoms form a singlet state (and cause bonding), they become
paired; an electron from a third atom must find an unpaired clectron clsewhere,
that is, participate in a different bond. Another consequence is that molecules
have spin 0 in most cases.

Let us next go through a process analogous 1o the building up of the
electronic shells in atoms. In Fig. 21-3 we show pictures of acomic orbitals, in
patticulat the 5(¥oo) orbital and the p-orbitals. For the lateer the linear combina-
tions (Y1 + ¥i,1) and py(Yu — Y1) are plotted in addirion to p.(Y10)-
The cottesponding d-orbitals, dyy, dez, dye, e, and doe — d,,, are not shown,
because the 4-electrons will play no role in our discussion. Figure 21-4 represents
what happens when atomic orbitals are brought together and exchange occurs.
Thus, two 15 atomic otbitals may combine into a spatially symmetric MO (hence
with spin 0) or into a spatially antisymmetric MO, which is antibonding since the
wave function between the nuclei is small. Similarly, the formation of bonding
and antibonding MO's with p-otbitals is illustrated in the figure. Note that
(&) the patity g™ or "u” can be read off from the figures, since these indicate
the signs of the wave functions; the distributions that change sign upon re-
flection in the x=y plane, here represented by a vertical line, ate odd; {5} since the
pe- and p,-otbitals have m; = =1, the molecular orbital formed from them is a
x-otbital. It should be stressed that in the figure we ate nof just bringing two

- charge disuibutions together, but are trying to suggest the probability amplicude
that results when wave functions are combined, that is, the MQO’s such as
Y1u(Ta) & Ynfrp,) and iy, (ra) & ¥y () for Rap large and for Ryp small.

We can use the MO's to discuss the properties of a few diaromic homo-

nuclear molecules:

H;. This molecule was discussed in some detai!. We merely tepeat that the
two electrons can go into a lss, MO, and since this orbital has a lower energy
than the separated 15 atomic orbitals, there is stabiliry.

He,. Of the four electrons, only two can go into a bonding 1so, orbital;
the other two must form an antibonding Lie,* orbital. The net energy is greater
than that of the separated He atoms, so that no molecule is formed. In tetms of
the Valence Bond picture, both atoms have paired electrons and the conclusion
is the same. In general, electrans in bonding orbitals and in antibonding orbitals
tend to cancel each other cut. Since there are two electrons involved in a full
bond, we may speak of a bond number, given by

Bond } _ 1 Electrons in ) Elecrrons in
number 2 | \ bonding orbitals antibonding orbitals
This number vanishes for He,.

Liz. The atomic structure of Li is (15)%25). Thus, the 25 electrons are
unpaired, and they can form 2so, bonding orbitals. We thus expect the molecule



fc)

)

2,

Fig. 21-4. Molecular orbitals resulting when two atomic orbitals are brought
togethet. (#) Two s orbitals combine to form the spatially symmetric MO ¢ that
gives rise to bonding; (5) Two s otbirals combine to form the spatially antisym-
merric amibonding MO ¢4*. (¢) and {d) show bonding and antibonding with py
atomic orbirals; (¢) and (¥) show bonding and aatibonding with P orbitals. The
z-axis is along the line conmecting the nudlei, which are represented by black dots.
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Fig. 21-.4. continued

to exist, but because of the # = 2 value of the orbital, we would expect the
binding to be significantly smaller than for the Hs molecule.

Be,. Here the atomic structure is (15)2(25)2; thete are no unpaired ¢lec-
trons, and hencé we expect no molecule to exist. This is indeed so.

B:. The atomic structure indicates that there is an unpaired 2p electron in
each atom. It can be in any one of the states 2f., 2p,, and 2p,. They may com-
bine either into a 2pr, or into a 2pe, MO. The former has a lower energy, so
that here the ground state is a wipler. 'This is in agreement with Hund's Rule;
The state with highest multiplicity has the lowest energy.

The reason why Zpo, has a higher epergy is that there exist 20, orbitels.
Whenever there are states that have the same quantum numbers, “mixing”
occurs, and states that are almost degenerate tend to repel each other. The state
thac is largely 2po, is pushed up. We begin to sce the appearance of complica-
tions similar to the ones that appeared in our discussion of atomic structure!

Cs. The atomic structure is (15)2(25)%(2p)?, that is, each atom has two
unpaired electrons. Since each electron can be in any one of theee p stares, two
bonding MO's can be formed. The MO description turns cut to be (2pe,)(2pw.).
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N:. Here the situation is very similar to that of Cy except that three bond-
ing MO'’s can be formed. The MO description turns out to be (2pag) (2pma)t.

O:. Here things get 2 lirtle more interesting, beczuse the atomic structure
is (15)*(20)2(2p)", that is, there are four valence electrons. In terms of molecular
orbitals, three bonds, as in Na, can be formed, but this leaves two electrons that
cannot possibly form a bonding orbiral. What is the least harmful antibonding
orbiral? The two electrons should avoid each other as much as possible, and this
can be done by means of a triplet state, with the electrons in orthogonal orbitals,
for example, one in a p,, the other in a p, state, with the two spatially anti-
symmeurized. In this case the spin of O; is 1, an exception to the strong tend-
ency toward zeto spin that was mentioned earlier. -

In the Valence Bond pictute, two of the four valence electrons in oxygen
must be paired, so that two bonds will exist otthogonal to each other, as p. is to
=, for example. One may see the effect of this directionality in a molecule like
H,O. Each H uses up one bond, and we would expect the shape of the molecule
to be an | with 90° between the equal length arms. Actually, the two hydro-
gen nuclei tepel each other, and one might expect the angle to be a little larger
than 90°, Experimentally it is around 105°! It is the directionality of the p-orbitals
that explains the shape of simple molecules.

Lest the teader feel that all of chemistry can be understood with the ma-
terial at hand, we will point out just a few of the many complications that show
the subtle soutces of the incredible variety in the structure of matrer. For ex-
ample, a carbon atom has two valence electrons, and one might expect 2 CH,
molecule, wirh a shape similar to the HsO molecule, to exist. Actually, C tutns
out to be tetravalent (four bonds) rather than divalent, so that it is CH, that is
actually formed. ‘The reason is that although the ground state of C is
(1902(25)2(2p)?, the excited state (15)%(21)(2p)? differs very litcle from it in energy.
This state, however, has four valence electrons, and the molecular bonding with
four bonds is sufficiently stronger than that with two, to compensate for the
electronic excitation energy. More precisely, the near degeneracy of the 2sand 2p
states in the atom allows the formation of linear combinations that allow larger
overlaps. Figure 21-3 shows that a linear combination of an s- and a p-otbiral
gives a lopsided wave function allowing an increased overlap. This “mixing” is
actually quite common. We may give a more deailed description of the water
molecule by wotking with hybrid orbitals that involve s and p-orbinals, If we
ignore the difference becween the 25 and 2p electrons in oxygen, then we must
really deal with the more general states

x? = oW, + 806, + 80, + B¢ (21-12)
with the coefficients constrained by

P = by (21-13)
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Fig. 21-5. Combination of s and p, orbitals leading to unsymmetric wave func-
tion.

rather than with ¢, 5., $25,, 20d @2y, a0d molecular orbitals of valence orbitals
constructed for use as erial wave functions in the variational principle should be
made up out of the x's. The minimization of the energy will determine the
caefhicients o'? and 9. For the HzO molecule, it turns out that the four ortho-
normal combinations are

w — R
b's \ﬁ (2 + Bop. + Do, + D2p)
x® = \/. (e + d2p. — G2, — $20)
X(S) 7 (¢'2a b2, + d’zp. ¢zp,)

xW = Nz (P2r — dap, — $p, + G35 (21-14)

Consider now the 10 electrons in HyO. Two Ls electrons remain strongly
bound to the oxygen atom, (Qne could, for consistency, describe them in terms
of 15, and iz, MO's, analogous to the Hzt molecule, but this changes nothing.)
The temaining eight electrons go, two each, into the hybridized orbitals
¥, . .. x*_The geometrical shape of the molecule can be determined from che
form of these hybrid orbitals. If we try 1o draw what ¥ looks like, we see that
the last three terms are all negative in the octant (x, y, z < 0) and there they
effectively cancel the s term. Roughly speaking, x'* looks like a fat cigar point-
ing from the otigin to the poiat (1, 1, 1). Similarly x points from the origin to
the point {1, —1, —1}, and so on. The shape is a terrahedron, and some simple
geometry shows that the angle between the bonds, # satisfies sin #/2 = \2/3
so that 8 22 109°. Without hybsidizarion we found the angle 10 be 90°, and the
truth lies somewhere in between. In more accurate calculations, (21-14) is
somewhat modified, so that only three of the four orbitals are so pronouncedly
*plike” and the remaining orbita] has less directionality, that is, is more “s-like”.

This more detailed picture allows us to understand some of the properties
of water. If we think of the water molecule as oxygen, with four tetrahedrally
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oriented arms thar are charged, with protons, from the H's attached ro twa of
‘them by Coulomb forces, we first of all see that the water molecule may be
expected to have a large dipole moment coming from the two negatively charged
arms pointing away from the proton. We recall (cf. Chapter 16) that a ground
stute can only have an electric dipole moment if it is degenerate. We easily see
that since the ¢s, change sign under reflection and the ¢, do not, the xt¥ are
not eigenstates of parity. The reflected orbitals, for example,

X = _12 (20 — d2p. — . — ¢2p,) (21'15)
have exactly the same energy and the reflected shape. The ground state is there-
fore degeneate, and a dipole momenc can exist.

When water molecules get ciose to each other ina liquid, the negatively
chatged arms of one may come close to the proton of another. The electrostatic
attraction berween the two will lower the energy, and there will be a tendency
for the two molecules to hind. The bond is faitly weak (0.2 €V) and is called &
hydrsgen bond. Each water molecule can bond four other ones at once, and one
thus expects to find large clusters of water molecules in the liquid, effectively
molecules of the form HaxOx. This leads to a strong temperature dependence of
the viscosity of water. In cold water, the large dusters easily tangle together;
heating the water breaks them up and reduces the size of the clusters and hence
the viscosity.

Many other molecules also form hydrogen bonds. This is how the process .

of dissolving works; water molecules form hydrogen bonds with the substance,
and the molecules of the substance would rather stick to the water molecules
than to each other; the substance dissolves. Oils do aot form good hydrogen
bonds and thus do not dissolve in water. o

Not alt hybrid orhitals are of the form (21-14). CH, is tettahedral, and in
fact the bond angle is 109.6°, but in C.H, the molecule has a planar scructure.
It turns out that for this molecule, the catbon orbitals are hybridized as follows:

x(l) = ¢2p.

xP = Lﬂ<bz- + \fgw
V3 30

1 1

1
R uﬁ@, - e b + \@%’"

1 1 1
x® = N b — %% DV bop, (2116)

The first one points along the z-axis, and the last three are oriented at 120°

intetvals in the x-y plane. The four outer electrons in catbon [specifically,
(25)%(2p)] go into these orbitals. Given two carbon atoms, the two electrons in
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Fig. 21-6. Bonds in the C;Hq molecule.

the x'® and x* orbitals bind to the hydrogens, while those in the x? and x®
states form bonds to the other catbon (Fig. 21-6). The clectrons in the x state
form 2 ¢ bond between the carbons, while the electrons in the ¥ state, being
at right angles to the bonding axis, form & = bond. Tt is these bonds that force
the two p, otbitals to be paralle], 2nd thus make che rest of the strucrure planar.

As 2 final comment, we note that in the so-called “aromatic” compounds,
for example, benzene, we cannot speak of such well-localized orbicals. The
carbons are hybridized as in CyH, and they form a planar scructure, with the p,
out of the plane (Fig. 21-7). The s-orbitals form a core, but the x-orbitals can be
paired according to (12) (34) (56) ot (23) {45) (61), both of which have the same
enetgy. As usual, linear combinations of these degenerate possibilities lower the
energy, so that the stable state does not have localized orbitals. This additional
exchange effect strongly affects the physical properties of the compounds, but 2
discussion of these would carcy us too far afield. For more information, the
reader should turn to books on quantum chemistry.

Fig. 21.7. Schematic picture of Benzene molecule (CyHg).
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chapter 22

The Radiation of Atoms

In the study of spectra, that is, the study of teansitions between atomic
levels accompanied by the emission ot absorption of radiation, one is interested
in the interaction between atoms and the electromagneric field. Since the radia-
tion feld oscillates, it is time dependent. It is therefore necessaty to study the
effect of time-dependent perturbations.

A. Time-Dependent Perturbation Theory

The problem is, given the complete set of solutions to

Hopo = En’pn (22-1)
to solve for (s}, which obeys the equation
2 vl v (222)

o

The standard procedute is to expand ¥{#) in a complete set of states:
W) = 2 o, (22-3)

The time-dependence associated with the ¢, is explicitly inserted in the ex-
pansion, so thar if V() = 0, the ta{f) would be constants. The expansion
coefficients £,(4) satisfy a set of equations that may be obtained by substituting
(22-3} into the time-dependent Schrédinger equation (22-2). We get

2 l:iﬁ deald) | Enﬂcn(:)]e‘fg‘”” o = HY(s)

" @t

L3

-2 [E,ﬂ + kV(t)},.(:)‘ e g,
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that is,

i ?{%‘) B g = N2 V(Da() ¢ 4 (22-4)

Taking the scalar product with ¢, and using the orthonotmality of the ¢,

(\d’mw”l ) == B (22‘5)

yields, after the factor ¢ B4 i« Jivided out, the set of equations
d -, | o — )
A2\ ) BB (o V()1 4) (226

We shall solve these to first order in the parameter A, As an initial condition at
# = 0 we take the system to be in a patticular state ¢y, 50 thae Y(0) = qsk, that is,

ni(0) = dua e L ’(22 7

e
Since departures from these values at later times will depend on'A, we may, fora
first-order calculation, substitute the above into the right side of (22-6). This
yields the differential equation (for m  £)

d m! f L] \) 1
i _C_dfi) =2 e'(B" =Bt/ @’M V(f) E¢'k) 7 (22-8)
which is easily solved
6,.(1) & f ¢ (Bt —Ea0t' /h (¢ I V(f') ! 4');) (22_9)

The probability that at a later time 1, the state w(;), is an eigenstate of Hy with

energy E,.’, chat is, “that it is 1s ¢,., 1s accotdmg to the expanston postulate
Pofs) = | @al¥))]* = 1a@)]® (22-10)

This general result can only be made more speaﬁc if V(#) is known. The per-
turbation will be specified next.!

B. The Electromagretic Interaction

The Hamiltonian describing the interaction of an electron in # static
potential () with an electromagnetic field described by the vector potential
A(x,2) is given by

4 [+ (/) Ay
2m

1 Acrually, more can be said if it is known thac either F{¢) varies very slowly oz changes™.

very rapidly compared to the typical frequencies (e.g., En% &) in the systemn. Se-called
“adiabatic”’ and “sudden” approximations are discussed in more advanced texts.

+ Vi#) {2211} |
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as we saw in Chapter 13. Thus, if we write
pﬂ
Hy= — + V{») {22-12)
2m
we find that
I NAGES £ AT -p (22-13)
mec

In obtaining the last expression we have specified the gauge so that

V-Alr) =0 (22-14)

" Under these citcumstances, p-A = A-p, and we have dropped the term quad-

ratic in A(r,7). If we treat ¢, the electron charge as the parameter of smallness X,
then the A® tetm is a second-order term, We will see that the A* term will
conttibute to the scatteting of light by an atom and to the transition with the
emission of two photons, but it will not contribute to the transition accom-
panied by the emission (or absorption) of a single photon. The probability for a
transition involving two photons involves a factor (¢%)%, whereas the one-photon
transition probability is proportional to ¢%. Recalling that the appropriate dimen-
sionless number involving ¢? is a« = ¢2/fic = 1/137, we are justified in concen-
- trating on transitions that ate accompanied by the emission of 2 single photon.
To give a real justification of the association of each A(r,7) with the
emission or absorption of a single photon—so that higher powers of "A(r,#)
imply the presence of more photons—one must treat the electromagneric field
" quantum mechanically, that is, treat the fields at each point r as opetators. This is
fundamenally not terribly complicated, but it is cutside the scope of this book.
The reader will have to take the following assertions on faith,

' If we wtite

A(r) = Ag(r) ' + Aglr) e ™ (22-15)

then in the emistion of 4 photon, only the ficst term, with the time dependesice &

is to be included in AF(#), whereas in the zbsrption of a pheton, only the second
term, with the time dependence ¢~ appears. This is a consequence of the
general association of Ag(r) with the creation of a photon and Ao(r) wich the
annihilation of a photon, and the time dependence is just what one would
expect from the harmonic oscillator (7-51). The resemblance to the harmonic
oscillator problem is not accidental, since in the quantization of the efectro-
magnetic field, what is done is 2 normal mode decomposition, according to
which one finds that the field is really a colfection of simple harmonic oscillators;
" these are then quantized. The “occuparion number” # that labels the harmonic
oscillator state vector may be associated with the number of photons, hence Ag
raises the photon number by unity and A, lowets the photon number by unity.

The more quanntatwe description of Ay(r) and Ar) need not, for-
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_tunately, involve the full machinery of quantum electrodynamics. We may use

correspondence principle arguments to find these quantities, and then just state
the quantum mechanical modifications. Away from the sources, the electro-
magnetic field has a very simple spatial behavior. If we look back at (13-12)
and substitute (22-15), we find that

2
—9AL(r) — %—An(r) =0 (22-16)
whose solution is
Ao(r) = Age*" (22-17)
with
]
K= (22-18)
&

The choice of gauge (22-14) implies that
kdo=0 (22-19)
The electric and magnetic fields corresponding to this vector potential are

1 OA ? )
E= — ——— - ™4, /%% 4 complex conjugate
[

B=VXA=ikXA /" + complex conjugate  (22-20)

Now the energy density of the electromagnetic field is given by

2
lEapy=L [z 9 AeAL+ 20k X A (k X AL + oscillating tctms]
8w Br et .

(22-21)

If we average ovet time, 5o that the oscillating tetms drop out, and make use of
the fact that with (22-19) ‘

(k X Ag)-(k X A}) = EAg-A T (2222)
and that £ = w?/c%, we get
RO CHRLANON, (22-23)
8r 2mre?

If the system is eaclosed in a box of volume, I, then the total enetgy in the
electromagnetic field is

1 'V :
1y — (E2 L) Pt 2 -
fd"sw(E + B% P | Acl {22-24)
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1f this is to be catried by N photons, each with enetgy fiw, we have

Ll —— AT = Nﬁw (22-2%)
2x
“The direction of A is determined by the polarization of the electric field, and
will be denoted by the unit vector ¢. It must satisfy

gre=1
k=0 (22-26)
We therefore obtain
2 ﬂNﬁ 1/% .
Alr,) = ( ”V ) e ¢ KT {(22.27)
o

. The quantum electrodynamic modification is the following: For the absorption of a
light quantum by a charged pasticle from an initial state that already has N
photons of frequency «, .

2‘!‘:‘,‘9;{\]‘%,)1"ﬂ et i or —a)
wl”

Aty = (

(22-28)

Fot the emission of a light quantum by a charged particle into a final state that
has N + 1'quanta, that is, from an initial state with N quanta of frequency w,

e ]
A(l',t) = [zl.iz_m_ljﬂ'] e —i(k T —wi) (22_29)
o

Hence for the emission of a single photon of frequency from a state that has no
" photons, we have, according to (22-13),

P A .
V() = c( :V) gop e~ T (22-30)
Hence
2areth e [t iEe— R
enl(t) = ( :V) (Bmle™™ " e-p|d) fo dy ¢ B —ES RN/ (57 31y

and thus the probability of transition from the initial state £ to the state = is
given by

2w & e ¢ HEab 2
Pin) = o | Bale T poplén)|® f [ FE= Rt/ (22-32)
The time-dependent factor is
I R Citlt ) 2, S At 4 A
FAdT _ JAH2 . JE -
\ di’ ¢ ‘ = A ‘ I's sin 5 = A sin® P (22-33)
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Fig. 22-1. Plot of the function 1/A% sin® fA/2 versus A.

whete
E,® — E
A= —ﬁkti‘-’ (22-34)

Figute 22-1 shows the behavior of this function. For lasge ¢ it becomes strongly
peaked at A = 0, and away from A = 0 it oscillaces very rapidly. This is the kind
of behavior that we associate with 2 delta function. In face, if f{4) is a smooth
funcrion of A, then, for r large

[m fla) ”51n2_dA f(o)f dA - sin® %

= 2f(0) [_,,, & - sin® y = 2x2f(0) (22-35)

that is, for ¢ large

4 .
a

= 2rfutb (" + i — Ei°) (22-38)

Thus the tzansition probability in (22-32) grows linearly with time, and hence
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the transition probability per wunir rime is

29re® ik
Tpum = 27 e e KT eup|on ] ? S(EL — B — fw) (22-37)
For general purposes, it will be useful to remember that if the dme-dependent
pettarbation is of the form

Vi) = pre ™ (22-38)

. then the formula for the transition rate is
2 .
T o= f | {bm| V¥ be){® 8(Es® — Ew® ~ o) (22-39)

As things stand, the teader undoubredly feels swindled. Firse of all the
" manipulations involved in (22-33)}(22-56) cemainly ate not straightforward.
They involve vague notions such as s large,” which cannot be taken too seriously,
gince a transition probability chat grows lineatly with time must sooner or later
exceed unity. Second, they lead to a nonsensical formula, according to which a
perfectly reasonable quantity, like the transition rate, is proportional to a delta
function. Needless to say, the difficulties are connected, and we will later
outline a more satisfactory discussion. At this point we merely note that the
faule lies in the use of percurbation theoty, and that boch (22-37} and (22-39)
are correct, if properly used,

For this, we note that [y ., is really the sransition probability per unit time
Jor the atom making a transition from ihe staie b to 1he state ¢, accompanied by the
emission of a photon of energy fuo. The delta function, unappealing as it is, does tell
us that energy must be conserved, that is,

i = E® — By (22-40)

The deltz function is actually integrated over, if we take into account that the
photon energy fiw does not uniquely specify the photon state. The phoron will
in generzl be detected in some momentum intetval (k, k + AK) in the vicinity of
{kf *= w/¢, and the tansition rate that is measured is really

R .p = § Tiw (22-41)
summed over all the possible phoron states in that interval. Note thax the various
final states in the interval Ak are in principle distinguishable, so that it is the
‘probabilities that are summed. We will see that the sum (22-41} is well defined,
since, in effect, it involves the integral of 2 delta function and a smooth function.
‘The sunmation will be treated in the next section. '
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C. Phase Space

We will now calculate the number of photon states in the momentum
interval (k, k -+ Ak), that is, the density of photon states, For the purpose at
hand, we write the vector potential A(r,7) in the form

1 .
Alry) = —‘\/—T/ a kTl complex conjugate (22-42)

where V is the volume of the enclosure in which the calculation is done. This
“box" is just a convenience to save us the trouble of working with wave packers
for the free particles {the photons, here——cf. Chapter 4). Its shape and the condi-
tions at the boundary may be chosen at will, but it must be large. Ar the end, we
will ke IV — . We will find it convenient to take the box to be a cube of
side L, and to impose periodic boundaty conditions, that is,

Alx+ Ly, z,0) = Alx, 1,2, 8) {22-43)

and so on. This implies, just as in the solution of a particle in 2 one-dimensional
box, that the wave numbers, that is, the momenta, are quantized. The form
(22.42) requires that

gl _ gL _ kL _ (22-44)
that is, that the wave numbers be of the form

2 2r - 27
k= 1 ' k= - M b = - " (22-45)

where n., 1, and n; are integers. We also have
Ak = AE, Ak, Ak, = (ZT")a Ay bny An, - (22-46)
and
w= |k|e = 2T‘:_':f(ﬂ!,,’ + #2 4+ mht (22-47)

. When we carry out a sum like that in (22-41), we sum over all values of (n., n,, #.)
in the range specified by (22-46) consistent with the constraint of the delta
function. Thus

R.&—nn= E I‘Eam
ak



The Radiation of Atoms 349

(2 ﬁ)s (22-48)

In the second line we made use of the fact that as ¥ becomes large the states
become vety dense, and the sum can be converted into an integral; in the third
line (22-46) was used, and in the last line, the relation

p =ik (22-49)

was used. The integration is over the volume in momentum space defined by the
experimental arrangement. If we write

Hp = &Y, prdp = 49, (%)z d (%) k3 (22-50}

where 2, is the solid angle differential, we find that the energy conserving delta
function is integrated over and the result is

4“'2‘2 —ikr
Riww = [ o | Gale ™" e-ploa)? “"%(z iy
X B of d(ﬁ“’)a(.eﬂ—a S i)

o 1 —rk-r - |*

= [ d9, — ww|— @nle™" " e-plés) (22-51)
o e

where
—_ Emo

Wi = (22-52)

If the experimental apparatus does not discriminate between the polarization
states of the photon, the rate calculation must include a sum over those two
independent final states. Furthermore, the sum should also include all the fina}
states of the atom. This will be discussed in a later section.

The phase space
_rdp
ek
is not restricted to photons. An electron that is free is described by the plane
wave funcrion 1/4/ ¥ ¢® " and it will have the same density of states. The only
difference is that the relation between energy (which appears in the deha func-
tion) and momentum is E = p*/2m [or, relativistically, E = (p%? 4 m2ct) 1%
instead of E = pr.

(22-53)
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If we have severzl free particles in the final state, the density of states is
the product
V d*ps
& (2xf)y

(22-54)
The expression (22-48) combined with (22-39) then generalizes to

L Vi |2 ( 0 — R )
R:—O,' = [ I‘I (Z'Jrﬁ)a IMJ"‘ & Ef + ; Ek El (22'55)
independent

momenti

where M, is the matrix element of the perturbation between the initial and final
states of the unperturbed system. The delta funcrion again expresses energy
conservation, that is, the energy carried off by the free particles is equal to the
energy change in the system, and the integration is over independent momenta. Thus,
if a system decays into three particles, there are only two independent momenta,
since the third one is determined by momentum conservation. Note, however,
that the product of factars in (22-54) is over 2/ the parricles in the final state,
that is, it involves 1" if there are # particles in the final state. Equivalently we
could write (22-55) as an integral over #l/ momenta, with a delta function that
includes a statement of momentum conservation. The reason that such a delta
funcrion did nor appear in our detivation is we are dealing with atoms that are so
much more massive than the photon (precisely Maiam ¢ 3> Fw) that the atomic
recoil never entered into the calculation, At any rate, the result

y V &ps
1 f ];I (2xh)?

X | Myl 5(5'&" -E - X Ek) 5(Pi -m— X Pk) (22-56)

which could also be abbreviated by

Rr'—»; =

27 . '
R =3 | M| 2 o(E) (22-57)

with p(E} called the density of states, is a fundamental result, and has been
named the Golder Rule by Fermi. ’
Note that the volume of the box always drops out. For  free particles in
the final state, thete is a ' from the density of states (phase space) and a 1/ vV
for each free partcle in the matrix element, coming from their wave function

eim: «c/h

. \_/LVW . : (22-58)
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There are # of these factors, and thus the V7 dependence of the square of the
matrix element just cancels the I from the phase space. We will have further
occasion to use the Golden Rule, but at this point we turn to the evaluation of
the matrix element for the radiative transition.

C. The Matrix Element and Selection Rules

Our next task is to calculate
{bmle ™" e-plén) (22:59)
We begin by estimating its magnitude. For a typical atomic transition
ep~ |pl ~ Zmea (22-60}

We also need to estimate the exponent, since it is an oscillating facror and could
change the result significantly, With

# ~ :%Z; (22-61)
a.nd
& ~ % NW%“iiz“)’ ~ 2 2y (2262)
we have
Br~3Zn (22-63)

Hence, for Zo <& 1, the order of magnitude of the matrix element is indeed
Zmca, thus

2 o)
Rim ~ 20e(Za)? ~ o Zar)? M

2
~ a(Za)* % ~ 2 X 10" Zt sec! {22-64)

It simplifies matters that in the expansion

ke < (—)r .

D Y A (22:65)
pr R 1|

the successive terms are estimated ro decrease as Za. Thus, to order Zer,

(b6 ™™ e pldbe) 2 {bn|e-pldn) (22-66)
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We may write this as

e (o | plée) = me- {n|de/ds| )
= %e- {&m| [Hr] [40)

E.* — E;°
= im (—ﬁ—ﬂ e {m|ridhi}

= imw e (Ga|r]61) (22-67)

Thus we are interested in calculating the matrix element of the operator r, and
that is one reason for cafling the approximation (22-66) the electric drpole
approximation.

If the initial state ¢ is a hydrogenlike state characterized by the "initial”
quantum numbets #;, /;,and m;, and the state ¢, the final state, by the quantum
numbers #y, /, and m;, then what needs to be evaluated is

('ubmls'r|¢k) :fn r dr]dﬂR:m(r) Yfmr(as‘ﬁ) e'ard.'(r) Ylim1(6a¢)

= [ r drR:ﬂ;(r) P‘Rm[‘(")

X f Y, (0.6) v Vi (60) (22.68)

The radial integral will be discussed for a spedial case in the next section. Here
we concenttate on the angular integral. We have

£-T = €, 5108 cos ¢ + ¢, 5in 0 sin ¢ + g cos d

and making use of

\/i Y1.q(6, ¢)= cos @ ,\/E Yilf¢) = F sin 0 &% {22-69)
4 8r

a little algebra yields

v = T (ezyl,u + ;El;ri’e” i+ ":;5”’ Y, ‘_1) (22-70)

Thus the angular integral in (22-68) involves

fdﬂYzm {81 ) Ylml(e:‘b) Ylm-'(ar¢) (22-7])
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Let us frst consider the azimutha) integration. It yields
2 . - -
f dd’e—:mﬁ & S — o 5,”:”‘!_%_ (22,72)
3

We thus get the first selection rule
my—mi=m=10,~1 (22-73)

This was the selection rule that was mentioned in our discussion of the Zeeman
Effect. Specifically, if we define the z-axis to lic along the photon momentum
disection k, then the condition (22-26) implies that ¢, = 0 and hence m = £1
only appeats, so that

my — my = 1 (22-74)

As a special case, we norte thac if the final state is the ground stare, with § =
my = 0, then m = —m;. For example, if m, = 1, thenm = —1 and hence the
polarization vector for the radiadon is {e; + e}/ /2. The implication is
that if the atom in the initial state is polarized along the z-axis with m: = 1,
then in a decay to a state with zero angulac momentum, the conservation of the
z-component of apgular momentum demands that the photon catty this off.
The photon must therefore have its spin aligned along the posicive z-axis, that 1s,
it must have positive helicity (helicitcy = +1), o, equivalently, it must be left-
circulatly polarized. This is just what the term (e, + Ze;)/ 4/2 indicares.

The § integration gives fise to another selection rule. Consider first the
special case that §; = 0. Since Yo,0 = L/+/4w, the angular integration (22-71)
involves

1

1
ﬁfdﬂyl,m(e@] Ylimi(ﬂs‘b) = \/ﬂ 8#.1 6rvu‘.—m (22‘75)

which implies that the initial state must have f; = 1. In hydtogen. the dominant
transitions to the ground state will be np — 1.

Mote generally, when /; and [ do not vanish, we still ger a sclection rule.
The detivation, beyond the scope of the mathematical knowledge about special
functions assumed in this book, makes use of the addition theerem for spherical '
harmonics, which reads

hitl:
Yo, (8,9 Yy (0:9) = L E lc(Ls m + ma; b, by, ma, ma) YL,m+m(0r¢)

- (22-76)

The coeflicients C(L, my + me; b, by, #n, mea) ate the same Wigner coefficiencs
that appear in (15-44). The possible angular momenta on the right side are just
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those that could be obtained from the addition of the angular momenta | and L.
Substitution into (22-71) yields

e+l . .
]JQY;W(H,#’) ; CL,mt m L hm o m) Y gym (09) =0
L={Fn

unless
=L+ L4 |L-1] (22-77)

This is the general form of the elecrric dipole radiation selection rule
Al=1,0—1 (22-78)

with the observation, obvious from (22-75) that there are no zero-2ero traniitions.
There is a further constraint that comes from patity conservation. Since r is odd
under reflections, there is an additional selection rule for the electric dipole
transitions:

The atomic state must change (22-79)

parity
Since parity is given by (—1)", this implies that che J-value must actually change.
Thus, for example, 3p — 2p transitions are not allowed to order Ze.
To the extent that the only perturbation is the coupling

< p-Alr) (22-80)
mec

there is no spin dependence in it, and hence the spins cannot flip in the transition.
'This leads to the additional selection rule

AS =0 {22-81)

mentioned earlier in connection with the specrum of helium.

The selection rules stated above ate pot absolute. The conservation laws of
angular momentum and parity (for electromagnetic processes) are absolute,
but (22.78) is only apptoximately true. Transitions becween states that involve a
change of /larger than 1 cannot take place through the electric dipole mechanism.
They can still take place, provided there is a nonvanishing matrix element

{bsle™™ " e-ples) (22-82)
For Al = 2, the first power of k-r will give a nonvanishing contribution. We
may write ’
} (epkor + expk) + 3 (epker — erpk)
=1(epkr+ erpk)+ 4k Xe)-(rXp) (22-83)

The first of these terms is calied an electtic quadrupole term, and the second o
is clearly related to an L-B term, and is called 2 magnetic dipole term. For these

k're-p
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transitions, whose matrix element we estimated to be Ze times smaller than the
leading term, we will have A/ = 2, and, since the operators in {22-83) are even,
there will be no parity change between the atomic states. Transitions between
34 — 15, for example, cannot go via the electric dipole mechanism, but can go
via the electric quadiupole mechanism. Actually, it turns out to be much mare
probable that the 34 state decays first into a 2p state, and the latter then uader-
goes the favored 2p — 14 transition.

The spin selection rule AS = 0 too, is not sacred. In addition to the
coupling (22-80) there is the coupling discussed in connection with the anoma-
lous Zeeman effect

W) = 5% S B(r,?) (22-84)

The matrix element for AS # 0 tansition-inducing term can beé estimated. We
compate it with the electric dipole matrix element
(eg/2me) ik X €| ﬁLk| _ i ~ met(Zar)?

@e/moipel  pl Iple  meZa)

and see that it is supptessed, just like the magnetic dipole matrix element, which
it strongly resembles in form. As an example of a situation whete the coupling
(22-84) plays an important sole, we consider the nuclear process of photo-
disintegration of the deuteron

~ Za (22-85)

y+d—ontp {22-86)

The deuteton, to a very good approximation is a 35; state. An electric dipole
transition must involve the final (# — p) system in a *P state since A/ = 1 and
AS = 0. [t turns out, however, that just above threshold for the reacrion, the
two nucleons are unlikely to be in a telative P-state. In general, particles will
be in = relative angular momentum L state with any appreciable probablhty
only if

lp ez fL (22-87)

where p is the telative momentum and # ate the dimensions of the system. For
the deuteton it turns out that for v's below 10 MeV in energy, the (# — p)
system is unlikely to be in a P-state. The additional coupling

~ oate &se T+ gs) B (22-88)

can, however, lead to a transition between the 35, swate, and the unbound 5,
state. The interaction may be rewritten in the form

_' ﬁ; [% (gi’ + gﬂ)(sy + 8) + % (gp — g,,)(sp — 5"_)} -B (22-89)
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The first term is symmetric under the » < p exchange, and hence cannort con-
tribute to a transition between a symmetric and an antisymmetric spin state.
The second term does, however, contribute. ‘The coefficients are actually quite
large, since g, = 5.56and gu = —3.8L.

There is one selection rule that is sacred, and that is the one forbidding
zeto-zero transitions (referring to fotal angular momentum f = 0} in one-photon
processes. A general way of arguing the absoluteness of this selection tule is the
following: The matrix element, a scalar quantity, must involve the photon
polatization linearly, and must therefore be of the form ¢V, where V is some
vector that enters into the problem. If the initial and final states ate § = 0 states,
that is, have no directionality associated with them, then the only vector is k,
the photon momentum. However e-k = 0, 5o that there is no way of con-
structing a matrix element. It must therefore not exist.?

D. The 2p — 1s Transition

Let us now specialize to the transition 2p — 1s in (22-68). We need to
evaluate the radial integral

f id "aR:o(") Ra(r)
0
hd Z \n 1 7\
4 el —Zrfag = ~Zr/240
fo ”'3[2(40) ’ ][‘Vﬂ(ﬂn) T
_].'_ (i)‘fm dr v L,—SZr/2¢o
6 @0 1] .
RN RAWELAN N £ e
V6 (zm) (32) [u oo —\/E(s)_z a (@220)
The angular integtal is

a1 f —e + i
]dQYu_:z'r Yim = _‘\E'[m 4;(6:1’1.0 + ;\/—;ﬂi’m

‘ f%‘_ﬁf Yl.—l) Yl,m
1 — & + iy & + iy
= — = 23 5"1, - am.— - = ﬁm
V3 ( Y Y )

(22-91)

*'The relation ek = 0 is independent of the choice of gauge, and is a statement ..

about the transversality of the electromagnetic field. Such arguments "'by enumeration” are
frequently used in elementary particle physics, where the interaction is nor really known.
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Now the absoluce square of the product of (22-90) and (22-91) is

96 (z)w ( dzo) [5,,.0&, 3 (Bmi + dmaXe® + &7 (22.92)

s0 thar the tdnsition rate is for a given m-value of che excited atom,

o L] 215 o 2
Repe = f Aty (2_) kT (E)

>< [ﬁm,ﬂflz + % ('Sm.l + am,—l)(ezz + Eyz)] (22‘93)
where
1|11 1
© 5[2 mz(z“)z( - 4)]
_3md
=37 (Za) (22-94)

is the frequency of the radiation emitted in the transition.

The angular integration in (22-93) is over the photon directions, and this is not
trivial, since e is constrained to be perpendicular to the photon momentum
direction. The integration is very simple if the initial p-state is unaligned, that is,
it occurs in the three possible m-states {m = 1, 0, —1) with equal probability.
The rate is then

Rip1s = 2 Rop1s(m) {22-95}
m=—1

Since

E [5"‘0&,2 + (5m1 + 6m —1)(532 + Eyg)] = & + Eyz +&t=1 (22'96}
the integtand becomes independent of the photon direction. This result should
also be mulciplied by a factor of 2. The reason is that there are two possible
polasization states for the photon, and we are detecting both of them. A more
careful way of writing (22-51) would bave been

& Wim <2 _iker .
f‘m 2 22 2 [mle ™" e p g} 2 (22.97)
x e

with A denoting the polarizations. The two polarization states are orthogonal,
50 thar we have

N = 5, (22-99)
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When all of this is put together, we get

a 1 {3md 1218 ﬁ)zl

Rogosty = 2-4x — —| = —/— Z%®) =~ -

i 2w & (s i a) 5“'(?&':20: 3

28 mct
=5 ’% aZar)t 22 0.6 X 10° 24 sec ™ (22-99)
This differs by a factor of about 25 from the estimate made in (22-64). Thus
detailed factors in the matrix elements are important and guesses cannot replace
2 calculation. Nevertheless, dimensional considetations and a proper counting
of powers of a do give us an order of magnitude gnidance to how large physical
quantitics in atomic physics are.

The expression for the rate

aQ, & w 2 T
L A . 22-100
Re=5 1 T 2 [irli-e (22:100)
may be translated into 2 formula for the intensity of radiation by multiplying it
by the energy of the light quantum fiw. Thus

o 2
i=d — -e™[? 22-101
I dgpzﬂa“’ :.2-:1 [{Ax|i)-™] {22-101)

This, however, is just the classical formula for the intensity of light emitted by
an oscillating dipole, of dipole moment .

d = elflr|iye™ (22-102)

providing anothet illustration of the cotzespondence principle.

F. Spin and Intensity Rules

The inclusion of spin does not change things very much. It is true that the
initial states and the final states can each be in an "‘up” ora “"down' spin state,
but since the interaction in atomic tansitions is spin independent, only “up” —

**up” and “"down™ — “"down’’ transitions are allowed. Hence the transition rates
will not only be independent of #: (as we saw in the last section) but also of =,,
and hence, m; With the inclusion of spin-orbit coupling, there will be small
{on the scale of the 2p — 15 energy difference) level splittings. For example, the

= 1 and » = 2 level structure is changed, as shown in Fig. 22-2, The spectral
line corresponding to the tansition 2p — 15 15 split into two lines, 2P0 —
12512 and 22Pys — 1?Sy2. For che splic states, the radial integral and the phase
space are almost unchanged, and hence the ratio of the intensity of the two lines can
be dstermined from the angular paris of the integral alone, that is, purely from angular
momenium considerations.
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Fig. 22-2. The splitting of the 2p — 15 spectral line by spin-orbit coupling.

The rable below lists the wave functions fot the states in question,

odd paricy even parity
J m; I=1 I=0
5/2 31”2 Y].lx+ -
3/2 1/’2 V' 2/3 Yux: + '\/173_ Yux- -
3/2 —1/2 V1/3 Y, axe + V2/3 Vi -
3/2 —3/2 Y1, ax- -
1/2 1/2 V'1/3 Yuxe — V2/3 Yux_ Yoox+

1/2 —1/2 vV 2/3 Yiaxs — V1/3 Yox. Yoox-

In the squares of the matrix elements, the radial parts are common to all of
them. Thus, in considering the rates for Py;; — 515 we must add the squares of
the transition matrix elements for m; = 3/2 5 m; = 1/2, m; = 3/2 5> m; =

—1/2,...m; = —3/2—m; = —1/2, while the tate for Py — 5172 involves the
sum of the squares of the matrix elements for m; = 1/2 - m; = 1/2, . ..
m; = —1/2 — m; = —1/2. This can be done directly by techniques that are

quite sophisticated and beyond the scope of this book. One can, however, work
out these quantities in detail, using the fact that the spin wave functions are
orthonormal. :

Py — Sis
mij=3/2->m;=1/2 {Yujr-e|Yu)|2=C
3/2— —1/2 0 since X:-X— =0
1/2— 1/2 [{4V'2/3 Yio|t-2| Yoo)|2 = 0 (Am = 0)
1/2— —1/2 {{V1/3 Yulre|Yo)|? = C/3
—1/2—’ 1/2 |(V]&Y1I_1|r‘!|Yon)|zﬁ ,’3
—1/2 — —1/2 | {v2/3 Yiolr-2| Yoo )i2 = 0 (Am = 0}
—3/2— 1/2 0

C

—3/2— —1/2 [ (Y1 alr-e| Yoo 3i?
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If we sum the terms we get

8
Y rR= ;C (22-103)

Similatly
Pus— Sz

mi= 12— mi=1/2 [ (V1/3 Y er| Yu)|? =0

1/2 - —1/2 [{(—+/2/3 Yy ex| Yoo)|? = 2C/3
—1/2— 1/2 | (V273 Yo\ enl Yood|® = 2C/3
'—1/2‘*’_1/2 |("\/LT§ Ylolt'r!.Yoon:U
- Again
4C
Y R= 5 (22-104)
Thus the ratio of the intensities is
' Pyy— S ac/
R(Pya— Sy _ 8G/3 _ (22-105)

R(Pys— Sy2)  4C/3 B

d

The reason for summing ovet all che initial states is that when the atom is excited,
all the p-levels are equally occupied, since their energy difference is so tiny
compared to the 2p — s enetgy difference. We also sum ovet all the final states
if we perform an experiment that does not discriminate berween thern, as is the
case for a spectroscopic measurement. In our calculation of the 2p — 15 transi-
tion rate, we gveraged over the initial m-states. There we were concerned with the
problem of asking: "If we have N acoms in the 2p states, how many will decay
per second?”’ The averaging came about because of the fact that under most
circumstances, when N atoms ate excited, about N/3 go into each one of the
m == 1,0, —1 states. Here, the fact that there are more levels in the Py state
than there are in the Py state is relevant. There will be ajtogether six levels,
(four with j == 3/2 and two with j = 1/2) and there will be on the average N/6
atoms in each of the states. The fact tha there are more atoms in the 7 = 3/2
subset of levels just means that more decay, and that therefore the intensity will
be larger.

Problems

1. A hydrogen atom is placed in an electtic field E{s) that is uniform and
has the time dependence

0 1< 0
=E08-7‘ >0

B
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Whar is the probability that as # — <, the hydrogen atom, if initially in the
ground state, makes a transition to the 2p state?

2. Repeart the above calculation with the rime dependence of the electric
field given by

E() = Ey e

and with the condition that the hydrogen atcm be in its ground stateats = — =,

[Hins. As a fist step, modify Eq. 22-9 appropriately.] Discuss your result when
the time-variation of the electric field is excremely slow.
3. Consider a harmonic oscillator described by

=L 2 L, .2
H 2mp,+§mw(r)x’

where

w(f) = wy -+ dw cos ft

and 8w <€ wq. -

Calculate the probability that a transition occurs from the ground state, as a
function of time, given thar the system is in the ground state at ¢+ = 0. Use
- pefturbation theory. Use the fact that for n # 0,

(nlle 0} = A/24/2mew for m =2
=0 otherwise.

Can you derive this formula using the material from Chapeer 77

4. Suppose a particle of rest mass M decays into two parricles of rest mass
m; and s, respectively. Use the relativistic relation between energy and mo-
mentum to compute the density of states p that appears in (22-57).
{Hint. There is only one independent momentum, say p, and what is needed is

4'p
f Q) é (Eini:ial - s%:;ls E)

" 5. Cansider the above calculation when the decay is of the form

A—=B+C+ D

with particles C and D massless.
[Hint. There are now two independent momenta.]

6. In this problem the adiabatic thesrem is to be fllustrated. The theorem
stares that if the Hamilronian is changed very slowly from H, to H, then a system
in a given eigenstate of Hy goes over into the corresponding eigenstate of H,
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but does not make any transitions. To be specific, considet the ground state,
so that

H|)¢;) = Eo@ﬁn

Let V() = f())V whete f(#} is a slowly varying function, as shown in the graph.
If the ground state of H = H, + V is w,, the theorem states that

i (ol @) — 1

Jie)

The steps to be carried out are the following:

(a) Show that
1 ¢ 7 0 -
ﬁ fo dl’ e'(E" Ew)fﬂif(f’) 3

for times # such that f{#) = 1. Use the face that

dfie') ,

P BBy
Either construct an example of a function f(:) of use integration by parts,
that is, wnte

#(Ent —BeP)1/A

E’“ﬂ_. EOD

e _ L2
C T md
in the above.
(b) Calculate y{#) using (22-3) and (22-9). Compare this with the formula

(16-19) which here reads
LT @alvien

M#DED—EO

= ¢ G

and thus show that
| o) )| — 2

7. Work out the 2p — 15 transition rate for the three-dimensional oscil-
lator, following the steps carried out in this chapter.

8. Nuclei sometimes decay from excited states to the ground state by
internal conversion, 2 process in which one of the 1s.electrons is emitted instead of
a photan. Let the initial and final nuclear wave functions be
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dr(e, To, ..., e4)  and  dplry s, ..., T4)

where r; (7 = 1, 2, . . . Z) describe the protons. The perturbation giving rise to
the transition is just the nucleus-electron interaction

. Z g2
V=-

=ole—ry

where r is the electron coordinate. Thus the matrix element is given by

—.rn . 2 pr
[ &r f Fry . . dragr” T 2. E Idmtmm(r)
i=1 — by

{a) What is the magnitude of p, the free electron momentum?
(b) Calculate che rate for the process for a dipole transition in terms of

d = E[dsn. .. diradErids

by making use of the expansion
1 i T
[t —7v) =+ r

Hinz. The integral can be evaluated using

f e P por () = eV, f & e ()

Sce the discussion of the photoelectric effect in Chapter 25,
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chapter 23

Selected Topi cs in

Radiative Transitions

A. Lifetime and Line Width

The number R{ — f) that we learped to calculate’in Chapter 22 represents
the probebility for the transition i — f, divided by the time during which the
perturbation has acted. This time must be ong compared to &/ (E." — E" + Fiaw)
in otder that the transition probability be proportional to ¢, but it clearly cannot

“be oo long. If we ask for the probability that the initial state remain inracr,
we get

P =1— [E R[i—ﬁ)} - (23-1)
Fi

where the sum is over all final states that are accessible. This -cleatly has no
meaning for long encugh times, since probabilities are positive. It tutns out
that if the calculation of the time development of the system is done more
catefully,! then it can be shown that the right side of (23-1) just reptesents an
apptoximation (to lowest order in the percurbation) to the correct expression—
again only true for long times—that

P = exp [— :f\'_‘, R(— f)] {23-2)
=
One may thus speak of a lifetime of the initial state
TR LRGN '

=i

1 "This is done in the Special Topics section, ™' Lifetimes, Line Widths, and Resonances,”

365
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The total transition rate R is the sum of partial transition rates into the possible
channels f. In the example that was discussed in detail, the 2p — 15 transition in
hydrogenlike atoms, no other channels are available, so that the Jifetime of the
2p state is

r= 1.6 X 107" Z™* sec (23-4)

This is in excellent agreement with experiment. Let us compare this (we take
Z = 1) with the time it rakes the electron to “go once around the nucleus.” The
velocity is a¢, and the distance is of the otder of 3 X 107% cm, so that the char-
acteristic time is of the order of 1.4 X 107'F sec. In terms of this time, the 2p
state is very long lived.

Since the 2p state has a finite lifetime, it should, by the uncertainty prin-
ciple, have an uncertainty in the energy, of magnitude

k
AE ~ — (23-5)
T
‘The way in which this mznifests itself is that the intensity of the line, as a func-
tion of frequency, is not completely sharp at the value wp = (Eap — Eips)/f but
it has a distribution of the form
R/2
(w — w)? + /4
Note that in the limit that R — 0, that is, ia the limit that pertutbarion theory is
stricely applicable, we get, as a consequence of the formula

Kw) « (23-6)

€
Lim ——————— = ri{w— e 23-7
im e e (237)
the line shape represented by the energy-conservation delta function. The width
of the line (23-6) is R, and this is a measure of the uncettainty in the eneigy.
This line shape, sometimes called the Lorentzian line shape, is not what is
generally observed, since there ate other effects that broaden it. There is:

(a) Collision Broadening. One does not observe a single atom in isolation,
but a gas of hot atoms. In the gas there will occur collisions between the atoms.
If we define a collision time 7, as some mean time between collisions, and if
ro < 7, then, in effect, the liferime of the state will be r,, and the energy un-
certainty £/7%.

To get a rough estimate of the collision rate R. {= 1/r.), consider one
arom at rest. If its effective area is o (the collision cross section that will be
discussed in Chapter 24), then it will be hir by another atom within 1 sec, if the
atom finds icself inside a cylinder of volume vo (Fig. 23-1). If there ate # atoms/
cm?, the number of collisions will be

R, = nvo sex! (23-8)
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Target

~,
Y *—-T *-2=v -—nr
'I L o -0 — a
’ *>0 - -—»7

P

Fig. 23-1, The number of collisions pet second for particles moving with a
velocity » normal relative to the target.

To see the dependence of this on the pressure and temperature of the gas, we
use the kinetic theory relation

mt = 34T (23-9)
and the ideal gas law
?
=4 23-10
"= (23-10)

where b = 1.381 X 10718 erg/deg is Bolzmann's constant, Thus, if for # in
(23-8) we take (2%}12, we get

R.= % (%Ij)ug (23-11}

16X 10 Mgm  so that M is the molecular weight

If we now write

10° p,  where p, is the pressure in armospheres

a X 1071¢ P where D is the atomic or molecular diameter in
Angstroms

&
[

then

pD?
v MT
‘The collision rate can be decreased by decreasing the pressure, so that in the
laboratory (in contrast to stellar surfaces) collision broadening can be controlied.

R, = 3.4 X 10% (23-12)

(b) Doppler Broadening. Even at low pressures, the radiating arom is
moving quite rapidly (the gas is hot) and its fiequency is shifted. If z; is the
velocity of the atom in the direction of the line of sight, then the shift is

¥z

A = w— (23-13)
&
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In terms of the temperature, given by

_ T
LI (23-14)
m
we have
B T \!2
— ~ 03 X 107° (;) (23-15)
@ M

where M is again the atomic or molecular weight (M = 1 for hydrogen, M = 4
for helium, etc.). Thus, the best that we can do is obtain

A

=2 10 (23-16)

@

whereas for the natural line width, this is ~ 3 X 1075

B. The Mossbauer Effect

An atom (of any other quantum system) cen act as a very accurate clock,
since its tansitions are signafed by radiation of a very well-defined frequency.
If the only limitation wete the natural line width, an accuracy of 1:10° could be
achieved in atomic transitions. As noted above, the Dopplet broadening reduces
this to 1:10°. One might think that use of a liquid or solid source would elimi-
nate this, but then broadening caused by the effect of neighboring atoms is
just as harmful. One might examine nuclear transitions. A nucleus such as
wIt1® emits a y-tay of energy ~100 keV, with a lifecime of 107" sec. This
cottesponds to

Aw A
E

2o

B/r 10 ¥/10710
o~ = ——— 06 X 1070 2317
E —10° X 1.6 X 1071 x @3-17)

There will, unfortunately, be a tecoil shift of the line. The y-ray carries off
momentum #w/¢, and the nuclens, to conserve momentum, must recoil with che
same momentum. This gives rise to z recoil energy

Pl 1 fhw\? :

AE = = (—) (23-18)
2M M\ ¢

and thus 2 decrease in the energy radiated. The fractional change in frequency is

AE e 107 (MeV)
B 2Mc T 2 X 940 X 191(MeV)

~ 3 X 1077 {(23-19)

The observation of radiation of this energy cannor be carried out with the
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conventional, extremely accurate specttoscopic methods, but must utilize a
detector that is extremely “well tuned” to the radiation. ‘This is best done by
using the same matetial {e.g., r7Ir'*) as an absorber. The absorption will be very
much enhanced at the “resonant” frequency at which the radiation is emicted,
but here, too, thete will be a recoil shift. The overall shift is thus Aw/w ~ 6 X
1077, Thus, the “fine tuning” does not work, since the line is shifred by far
more than the width, which is of the order of 107° . One could ty to com-
pensate for the recoil by moving the emitrer with the recoil velocity. This is
given by

¥ Precot  Pwfc fio
c Me  Me 2Mc2

~ & X 1077 (23-20)

that is, » = 1.7 X 10* cm/sec. This presents technical difficnlties, but it has been
achieved with an ultracentrifuge.

A major breakthrough came with the discovety by Mossbauer in 1958 that
undet cettain conditions thete is & high probability of recoilless emision. The
emission is not recoilless, of course, but the recoil is not taken up by the nucleus,
but instead by a krge part of the crystal that the nudeus is imbedded in. Since
the mass of the nucleus is 10?2 times smaller than chat of the crystal, the recoil
energy is completely negligible. To get some intuition abour what is happening,
Iet us consider the nucleus as moving in a harmeonic oscillator well, with char-
acteristic frequency we. The energy levels of the oscillator are

E, = A (n, +om+ ot g) (23-21)

The harmonic well is just an approximate description of the crystalline forces
that are responsible for the properties of the lattice. If the forces that tie the
nucleus to its neighbors are strong—if the "springs™ are stiff —then wy is large;
if the “sptings’ are soft, then w is small. In terms of level spacing, a “'stiff spring™
has widely separated levels, that is, a low density of states, whereas a ““soft
spring” has a high density of states. Let us now consider the matrix element for
a transition from a nuclear state described by ¥, (4, 14, . . . Xu) to 2 nuclea” state
described by ®,(ry, xs, . . . Tw), and we take the interaction o be

- = T peAdred) (23-22)

Mc protons

The mattix element then is propottional to

-= j f dory . . ey )> —n
MC_ [ 1-- Nfl'l..l'_w) = P e ‘I’.—(l‘;,...l‘N)
(23-23)
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If we introduce the center of mass coordinate B = (1/N) 3 o1 then (a) the
interaction term takes the form

£ _ikR —ik-g
—— . 23-24
Me ¢ m%ﬂs & Pef ( )

where p; = 1; — R, and (b) the nuclear wave function decomposes into a prod-
uct describing the internal motion and the motion of the nuclear center of mass
in the harmonic potential

‘I’(I'l, - rN) = \bn.s,m(R) ¢(91: - DN_I) (23'25)

Thus the matrix element {23.23) becomes

__e_ * —ik R \"
- [ Ry e R®)

X [d?m_ .. dYer_drln - . v 3 e e B, . .. o)
protans
: (23-26)

We may write this in the form
M = Migeraal f R, (R) e Fgo(R) (23-27)
whete we have set #; = 0, since the initial state is in the ground state of the

lattice. ‘The probability that the radiative transition leaves the nucleus in the
lattice ground state is

Ml | [RbicR) ) i

lMintP%

Pu(é) =

| [ SRS, (R) ¢ B(R) ‘ ’

(23-28)

f PRY(R) e Fgo(R)

In the last step we teplaced the sum in the denominator by unity, using com-
pleteness.? To calculate this, we use the normalized ground state wave function

2 The formal proof is quickest. We have
3 il RN = 3 @le™ B ny) (nfe™ Blo)
nr s
Using
1= 2 Ine) oyl

one gets
@B ERigy —
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of the oscillator. We fourd in Chapter 7 that the one-dimensional ground state
wave function is

14
Yolx) = (mﬂ) L2
A

Hence, for thiee dimensions we have

fi

(Mwwo)3’2[d3n ¢ MsoBYa ,—ik-R ’
wh

where My is the mass of the nudeus. We get

2
Py = (MN“"’) ( [ DR ¢ Mrea/iIR (/2 Myt |, 4/ M o

Vo(B) = val) 1) al2) — (’”‘”) Gp— (23.29)

We chus calculate

= kY2 Mt
il ener
— exp (_ w) (23.30)
level spacing

since Precoi = Rk and Fuw, is the level spacing in the lattice. Thus, if the level
spacing is large, that is, we have a stiff spring, recoilless emission becomes more
probable. The model of the lattice that was used here, chat of each npucleus
moving in its own harmonic potential, is the Einstein model of a lattice, and the
frequency wy is the so-called Debye freguency, so that we should really replace wa
by wp, which is telated to the Debye temperature Ty by

Fuop = £Tp (23-31)

A more accurate treatment of the latrice using the Debye model for its desctip-
tion merely changes the exponent by a factor of 3/2.

Tt is not quite correct to say thac the whole crystal recoils; instead, in 2
time 7 equal to the lifetime of the transition (1.4 X 10~7 sec for Fe?), only 2
.tegion of the crystel of megnitude

L=ur

whete 2, is the velocity of propagarion of a lattice disturbance, (i.e., the velocity
of sound) absotbs the recoil, Now 2 reasonable estimate of #, is given by
aon

?y o ——

2w
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where a is the latrice spacing. Thus

L wpT

—_— e ———

a 2

and with wp == 101 sec™!, the number of nuclei absorbing the recoil, ~(L{a)?
is still enotmous.

The above estimates, combined with the uncertzinty refation, may be used
to show that it is not possible to determine whether it is & single nucleus that
“really” recoils. To measure the recoil energy %E%/2My takes a time of the
order of

h
AT -
2 (h2k2/2MN)
The condition for the Mssbauer effect to occur is that
ﬁ!kﬂ
—— < i
2My »
Hence
1
At T —

wp

During that time the disturbance will have travelled a distance
@ a
dzv,A:NJAt>>—
% 2z

that is, ovet a distance coveting many nuclei.

The question arises of how did we manage to get away from the problem
of recoil 2nd momentum conservacion by talking about the encrgy scates of the
aucleus in the crystal lattice? Where does it say that the crystal absorbed the
momentum? The quantum mechanical answet is that, if we want to talk about
momentum, we should work in a momentum fepresentation. This, however, is
complicated, since it is difficult to describe the ceystal forces in that representa-
tion. What one must do is to decompose the crystal motion (the crystal is just a
lot of oscillators with neatest neighbor “springs’’) into normal modes and
quantize these, The quanta of the lattice motion, analogs of photons, are the
phonons. Recoilless emission then means a transition in which phonens are not
emitted. ‘The resulting formula is very similar to (23-30). Under these citcum-
stances, the recoil broadening is infinitesimal compated to the natural line widch.
There is still Dopplet broadening because of the thermal motion but this can
be handled by cooling the emitter and absotber.

Recoilless emirters ptovide us with a superb clock, and research utilizing
the Mussbauer effect has been done in many fields, such as solid-state physics
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and chemistry, We will mention just one application, the terrestrial measurement
of the gravitational red shifr. We noted® that a photon will have its frequency
shifted by

Aw _ gx

= 23

—~ =3 (23-32)

if it falls through a height x. This can be compensated by a recoil of velocity »,
wheret

= 2gx (23-33)

(If the photon and the absotber were to fall freely rogether, there would be
resonant absorption.) If the absotber or the source are allowed to oscillate
rapidly—one uses a transducer—and the absorption curve is correlated with the
osdillations, it is possible to check the gravitational shift. Since the velocity, fora

- separation x = 20 m, is of the order of ~20 m/sec, the experiment is feasible,
- and was carried out by several groups. Within the errors, the effect is confirmed.

For example, for Fe™ the predicted shift is Aw/w = 4.92 X 1075, and the

experimenta] shift found by Pound and Rebka is (5.13 £ 0.51) X 107% A

similar experimeat in which the energy shift of the y-ray emitted by Fe®' accel-
erted on a rapidly rotating turntable was measured again yielded results in
agreement with the Equivalence Principle.

C. Induced Absorption and Emission

In our discussion of the normalization of the vector potential appropriate
to the radiation of an atom in Eqs. 22-28 and 22-29, we saw that the matrix
element for emission was proportional to (N + 1)'/2, where N was the number
of quanta in the inicial state and the mauix element for absorption was propor-
tional to N2, Since this refers to quanta of a particular type, the quantity N
should really be labeled by the momentum fik and the polarization state \ of the
photon, that is, N should be replaced by Ny(k). We may use the N-dependence
to derive the Planck Radiation Law, thus providing a quantum mechanical
justification of Planck's approach.

Let us consider a cavity containing radiation. The walls conrain atoms chat
absorb and emit radiation. Since thete is a variety of atoms, with a variety of

.enetgy levels, there will be a continuous spectrum of frequencies. We will

concentrate on a particular frequency, corresponding to transitions berween a

3 See the Special Topics section 2 “The Equivalence Principle."

¢ It is one of the subtleties of radiation in a gravitational field that the Doppler shift
is the fransverse shift »’' = »(1 ~ #2/¢?)¥2 Only in this way will the shift in an accelerated
ftame be the same, whether the absorber is falling or sitting on the edge of a rotating disk,
with the emitrer in the center.
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patticular pair of levels in a particular species of atoms, that is, we will describe
the atom as having two states of enetgy, B and By, tespectively, with E; < E,.
When equilibrium is established, there ate as many photons absorbed as there
are photons radiated.® The number of photons radiated by the walls is equal to
(numbet of atoms in the upper state "2") % (tansition rate for “2" — “17);
the number absorbed is equal to (number of atoms in state 17} X {transition
rate for “17" — 27", that is,

Nchmission = NlRabsmption (23'54)
We also have
Remission = [Nl(k) + 1] R (23'35)

where Ro is the emission rate into a state with one photon. We use (22-57) to
write this in the form

= _.1__ EE + 2

Rm-*zjz_‘_l ﬁE | (a[¥*|2)[2 e (23-36)
Here p stands for the density of photon states; we have the square of the mattix
clement, and it is summed over the final states of the atom, that is, the 2], + 1
angular momentun states, and averaged over the inirial states. This is exhibited
explicitly—the sum is over initial and final states, and is divided by 2J; + 1, the
number of angular momentum states for state 2. The reason for averaging
over the initial state is that when che state "2 gets excited, then all the states
that only differ by the m-value will get excited with equal probability. Only one
of the states is excited at a time, and thus the proper counting is done when
we sum over all of the 2J; + 1 states and then divide by their number. Note also
that we denoted the perturbation by P+ as the term associated with the rime
dependence ¢t For absorption, we have

Rybscrption = Na(k) Rz (23-37)
where )
Ru= —— 2% [@vinz (23-38)
2}1 +1 & .

The density of states here is the same as in (23-36), since we are dealing with
only one frequency. Furthermore,

Sievivlt= X X elvinelrin®

"y ny

X X aivHayraivte)
2 lajvz) (23-39)

» One must convince oneself chat it is permissible to consider equilibrium for one
frequency at a time, as we do here. This becomes plausible when we realize that the proba-
bility of emission of two photons at a time is smatl, so that the radiation field in the cavity
still cbeys linear equations.

it
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This assettion is sometimes called the Principle of Detailed Balance. On the face of
it, it is an identity, but one could imagine that the percurbation leading to the
uansition 1" — 2" is not the hetmirian conjugate of the perturbation that
leads to the transition 72" —» 'L in which case the above derivation would
break dawn. It turns out that the principle holds, ptovided that the total Hamil-
tonian is invatiant under time reversal.® The interaction of charges with the
electromagnetic field has this property.
As a consequence of (23-39) we have

Remission = Na(k) +1 . 2}1 + 1
Rs.bsorption Nk(k) 2_]2 + 1
NEkY+1 @
Tl oa 4
NE g (23-40)

where g; is the conventional notation for the degeneracy of the state “i.'" On the
‘other hand, we learn from statistical mechanics chat ar equilibrium, the occupa-
tion numbers of the atcmic staves Nz and N; are related by the Boltzmann
factor

~—Es/kT

N, g2 € B2 pufiT
=T —mar= _ ¢ 23-41
N g e BT g (23-41)
Hence
& e—ﬁw’ﬂ" - & — Rapsomrion — N)\(k) &2
& Ny Remission Nofk) + 1 gL
that is, :
1
Nufl) = AT | {23-42)

1

The photon enetgy at the given frequency is given by the product (number of
photon states in the interval &) X {(number of phetons) X (energy per photon})
X (a factor of 2 o account for the two independent polarization states), Thus

p %)

" TR _

V dp
(2xF)?

dU(w) T

V- dxk® db

2Fes

(2=

(

w

Srfi f w
2r

&3

.

gﬂwanT _

Ao O POl T

v
o (23-43)

1

 Acrually, in lowest order perturbation theory, (23-39) always does hold.
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To get the energy density, we divide by the volume of the civity V. If we express
this in terms of » = w/27, we get

8rh ¥
U =~ =1 (23-4)

In the presence of a large number of photons of a given wave length
[Ni(k) large] transition rates cotresponding to that wavelength will be enormously
enhanced. Thus if many atoms can be raised to a given excited state, and the
proper environment of the “right”” kind of photons is provided, then they will
decay in a very short time, thus giving rise to an intense, coherent, and mono-
chromatic pulse of radiation. The laser (Light Amplification by Stimulated
Emission) does just that. Under equilibrium conditions it is difficult to obtain a
large number of atoms in the excited states from which the transitions are to
take place, because the Boltzmann factor ¢~/ is very small, even at high
temperatutes, so that special techniques must be used to achicve this.

Consider for example, the helium-neon laser. There, advantage is taken of
the fact that the 215, and 225; levels of helium almost coincide with certain sets
of levels of neon, the (2p)5(55) and (2p)%(4s) excited states, respectively (Fig.
23.2). The helium levels ate easily excited; an electtical discharge in the gas will
excite many levels, and they all ultimately decuy to these states. The excited
helium atoms will collide with unexcited neon atoms in a mixture of the two
gases and easily uansfer their energy to them. In this way a large number of neon

2's, Collision
S (Bs
2pii6e) Visible laser
transition
238, Collision -
——
(291 (45} Infrared
faser transition  p————
E—————
(20535}
Deexcitation by
cotlisions with walls
2p)®
1S,

Fig. 23-2. Schematic sketch of relevant encrgy levels in He-Ne laser.
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Fig. 23-3. Schematic sketch of laser.

aroms find themselves in states that would otherwise be sparsely -populated.
. A population inversion is created in the neon. These excited states decay to {2p)*(4p)
and (2p)%(3p) states, emitting photons of a well-defined wavelength. These
_photons are trapped by mirrors, thus creating the proper environmenc for the
"next round of what is now strongly stimulated emission (Fig. 23-3). In this way
intense monochromatic and coherent beams of photons are cteated. ‘

The technological applications of lasers ate manifold, and their develop-
ment provides just one of many examples of the usefulness of quantum theory
‘a0t only for the understanding of natural phenomena, bur also as a source of
few, subtle technological tools.
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chapter 24

Collision Theory

Atomic and molecular strucrure was largely explored through Spectros-
copy. When it comes to trying to understand nuclear forces and the laws that
govern the interactions of elementary particles, the only technique available is

- that of scattering a variety of particles by a vatiety of rargets. In some sense,

spectroscopy is also a form of “scatrering.” The aztom in the ground state is
excited by some projectile (it may be electrons in a discharge tube or collisions
with other target particles, as in heating up of the gas), and then an outgoing

- photon is observed, with the atom going into the ground state 2gain, ot possibly
_anothet excited state. We do not usually describe these processes as "collision

processes’” because the atom has very well-defined energy levels, in which it
stays for times that are enormously long compared to collision times,! so that

it is possible to separate the “decay” from the excitation process. In particular,
the characteristics of the decay are not sensitive to the particular mode of

excitation. In nuclei and also in elementary paricles, there exist levels, but
frequently the lifetime is not sufficiently long to warrant 4 separation into
excitation and decay, especially since accompanying the “'resonant” scattering
there is also nonresonant “background” scactering, and the disentangling of
the two is sometimes complicated. In this chapter we will thetefore discuss the
process as a whole.

A. Collision Cross Section

The ideal way to talk about scattering is to formulate equations that
. describe exactly what happens: an incident particle, described by a wave packer,
approaches the target. The wave packet must be spatially large, so that it does
not spread appreciably duting the experiment, and it must be large compared

! Recall that the lifetime of a 2p hydrogen state is 1.6 x 10~ sec, which is latge com-
pated to the characteristic time ap/a e =~ 2 x 10-17 sec.
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with the target particle, but small compared with the dimensions of the labora-
tory, that is, it must not simultanecusly overlap the rarget and detector. The
lateral dimensions are, in fact, determined by the beam size in the accelerator.
There follows an intetaction with the target, and finally we sce two wave packets:
one continues in the forward direction, describing the unscattered part of the
beam, and the other fies off at some angle and describes the scatrered particles.
The number of particles scattered into a given solid angle per unit time and unit
incident flux is defined to be the differential scattering cros section. We will not
follow this approach directly,? but will instead use some of the material de-
veloped in Chapter 11 to obtain the differential cross section. We will, however,
keep the wave-packet treatment in mind as we interpret our formal results.

In our discussion of the continuurn solutions of the Schrodinger equation

in Chapter 11 we concluded that: (a} A solution of the Schrédinger equation in -

the-absence of a potential is the plane wave form ¢*'", which describes a flux
. fi Rk
j= WYY — W) = — (24-1)
2im ]
If we choose k to define the z-axis, then the large r behavior of this solution

may be written (cf. 11-31} in the form of an incoming + an outgoing spherical
wave

i = e—i(kr —ix/2) ei(.&r—-hr/Z)
PLREN 2 @+ nd [ - ] Pycos )  (24-2)

I=0 ¥

(b) The conservation of particles forces us to the conclusion that the presence of
a radial potential can only alter this to a function, whose asymptotic form is

P e-i(!r—h’ﬁ) ei(kr—lrjz)
pr=—2 @+ 17 [——( — 5k ———:| Pi{cas 8) (24-3)
2k 1=0 r r .

subject to
|SiB)| =1 {24-4)

The asymptotic form (24-3) may be rewritten, with the‘help of (24.2), as

o) =+ [ ;i 2+ 1) Si—(k;—é—1~ Pifcos 9)] 4

_ ikr
— (24-5)
i r
corresponding to a plane wave + an outgoing spherical wave.? Note that we are
working with the effective one-particle Schrodinger equation, so that m is the
reduced mass and 8 is the center of mass angle between the direction of k (the
z-axis) and the asymptotic point r, where, presumably the counter will be set up.

1This is done vety nicely in R, Hobbie, dmerican Journal of Physics, 30, 857 (1962), at
the level of mathemarics that we use in this book. .
% See Bq. 11-36, which explains why this is called an oxtgoing spherical wave.
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When the target is much more massive than the projectile, there is no dis-
tinction between the laboratory angle and the center-of-mass angle, The kine-
matics are easily worked out using the material of the Special Topics section 1.
Nore also that we could, of course have set up a solution that has the asymptotic
form of a plane wave + an incoming sphetical wave since it is the first term in
(24-3) that could be medified by a coefhcient satisfying {24-4). However the
solution that describes the scattering is the one involving the outgoing wave,
Let us calculate the flux for the asymptotic solution (24-5).

RF ke ks
ji= Z?m [[ Lty A6) #:I [eﬂ‘" + £ %:! — complex conjugate]
(24-6)
" where we have defined
f8) = X @+ 1) filk) Pifcos 8) (24-7)
=0
with
S = [Si(B) ~ 1]/2ik (24-8)
Calcu.lating the gradient gives
—ibr ikr
— —r oy © ik 5T l_ w £
j 2im [e AL r }[!ke’ +tﬂr My
) A
+ t,f(8) | ## — — — ] | — complex conjugate
r ¥ : P
% ¢ —ike(1 —~cost) xir(l —cosf) 1
= 2im [ik + k0 —— + z,ét,ﬂﬂ) + ke | F8)]® =
Fer(i —cost) FEr(l —cos#)
— Lfl0) ———— 4 + e b];ﬂ) g!—rﬂ‘ — complex conjugate}

where we have left out 1/1% terms, and where we have used k-r = 4r cos 8, in
the exponential factors. Thus the flux is

. _ Pk Bk e L
=t —ulfe 4

ik 1 [ ; ) T
-+ E. T f*(ﬂ) e—:Er(l —~¢osd) f(ﬂ) e.uir(l —cosf)
Bk 1 b ot —comn ]
2m v f*(ﬂ) gt most] 4 ® At —cost)
A i [ B —i e T
= i o [JO TN 0

o [6) e _ OO _,-;.,u;mse;] '
2im 1 [ 28 T ¢ o
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This tather invelved expression simplifies considerably when we consider that
g s 0, since one never does 2 scattering experiment directly in the fprward
direction,* and that in 2 measurement one always integrates the flux over a small
but finice solid angle. Thus in the last four terms of this expression we should

teplace ¢ <" by

[ sin 6 dodp g(6,9) ¢ —cosd) (24-10)

where g(8.¢) is some sort of smooth, localized acceptance function for the
counter. Now, as  — @, we have an integral over a product of a smooth func-
tion and an extremely rapidly varying one, and this vanishes faster than any
power of 1/r. This is what is known in the mathematical literature as the
Riemann-Lesbegue lemma, and the reader can convince himself that this is
indeed so by working out an example, with 2 gaussian acceptance function, say.
Thus, only the first two terms remain, so that

#il i1k
A 1k |fo

p - " (24-11)

j=

In the absence of a potential, only the fiesc term is chere: it reptesents the incident
flux. In 2 wave-packet treatment, fik/m would be multiplied by a function that
defines the lateral dimensions of the beam. Thus, if we ask for the radial finx,
t;+}, then that tetm gives a contribution fik-t,/m = hE cos 6/m, but only within
a finite region of the z-axis (see Fig. 24-1). Since the counter is put outside of
that eegion, this first term does not contribure to the radial flux in the asymptotic
region, so that
MK
joir= ié . M (24-12)
" r

Thus the number of patticles crossing the area that subtends a solid angle #2 at
the origin (the targer) is

t,dd = L mfg—iﬁ rdG (24-13)

i =
m

‘The differential cross section is this number, divided by the incident flux,
fik/m, that is,
do = |f(B)|® 402 (24-14)

If the potential has spin dependence, there may be an azimuthal dependence, so
that mote generally,

de .
e |fled)|? - (24-15)

1 How could one tel! scatrered from unscattered particles?
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/
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Fig. 24-1. Schematic layout for scattering experiment. The scatcering angle is the
laboratory angle. :

The total cross section is given by

e (B) = [ JQ% (24-16)

I we now use f{#) as expressed in terms of 5;(2), and express the latter in terms of
the phase shift (cf. 11-41} 5;(k) = #™® 50 that

76) = %)f) @ + 1) €9 sin 5,(8) Picos 6) (2417)
=0
then

1 .
P f ) [E E:: (21 + 1) D sin 5i(k) Pifcos e)]

[é ; @'+ 1 e‘f“'(h sin 8;:(&) Pr{cos 9):|

and using
[dﬂP {cos 8) Pu(cos 8) = ir & (24-18)
E‘ 2 » - 2[+ 1 -H‘ -
we get
4r = .
Tt = *és— IZ 204+ 1) sin?5{£) (24-19)
=0
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It is an interesting fact that

Imf(0) = ig @+ 1) Im[* sin 58] Pi(1)
1 & , k
=2 (4 Vsin? 6lk) = — 0w (24-20)
k7o 4o

This relation is known as the oprical theorem and it is true even when inelastic
processes can occur, as they do in nuclear and particle physics scattering proc-
esses. It is 2 very useful relation and in wave language it follows from the fact
that the total cross section reptesents the removal of flux from the incident
beam. Such a removal can only occur as a result of destructive interference, and
the latrer can only occur between the incident wave and the elastically scattered
wave in the forward direction. This explains why f(0) appears lincarly. A more
detailed examination shows why the imaginary part is involved.?

The tequitement that |$i(#)] = 1 followed from conservation of flux.
Actually, in many scattering experiments there is absorption of the incident beam;
the carget may metely get excited, or change its state, or another particle may
emerge. Under these circumstances our discussion is unchanged except that

SUB) = nlk) &5 (24-21)
is to be used, with
o<k 21 (24-22)

because we are dealing with absotption. The partial wave scattering amplitude
15 now

Sk — 1 m(k) HEh _ g _ msin 28 1 — mcos 28
M8 =" = T w T (24-25)
and the total efantic cross section is
aq = dr Y @+ ISR
1 ‘
2
=43 @+ 1) L+ m — 2m cos 28 (24-24)
; T

Thete is also a ctoss section for the inelastic processes. Since we do not specify
what the inelastic processes consist of, we can only talk about the saral inelasic
erass section, which describes the loss of flux. If we look at a particular term in
(24-3), the inward radial flux carried by

F ‘—iEr

24

sSee L. 1. Schiff, Prog. Theo. Phys., (Kyoto), 11, 288 (1954).

Pcos 8)
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is

()=
m (2k)2
{cf. Eq. 11-36 and the fact that Yy = Pi{cos 0)/+/ 4r). The outward radial flux

is {fh/m)(| Si(k) |2 4r/4A%), so that the net flux lost is (fb/m)(xr/ED)[1 — 72(R)]
for each [-value, Hence, dividing by the incident flux, we get

Foa = 3 20 @+ D11 = m¥] (24-25)

Thus the toral cross section is

Oeor = Ol T Tinel

:%E’ Z+1D0+ 29— 2pcos28+1—nf)

i

X I+ )G w24 (2426

It also follows from (24-23) that
ImfA0) = ; {2/ + 1) Im fi(k)

— 1 CO5 25;

= ; (21 + 1) l— = Trot ‘ (24-27)

£
2k 4ir
s0 that the optical theorem is indeed satishied.

If 5i{£) = 1, we have no absorption, and the inelastic cross section vanishes.
When 5:(#) = 0 we have tatal absorption. Nevertheless there is still elastic
scattering in that partial wave. This becomes evident in scattering by a black disc.
‘The black disc is described as follows: (a) it has 2 weil-defined edge and {b) it is
totally absorbing. Since we will consider scatrering for shorr wavelengths,
that is, large #-values, condition (a) specifies that we only consider partial
waves | 5 L, where

L =tka (24-28)

and a is the radius of the disc. Condition (b) specifies that 7:(8) = 0 for the
relevant values of { < L. Thus

. .
T T

Tinel = 3y IZ_:‘) @i+ = = L = gt (24-29) )

and

L
gl = —; ‘E (2 + 1) = 72 {(24-30)
-0 .
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Fig. 24-2. Black disc scattering and the shadow effect.

so that the total cross section is
Giot = Gel + Tinel = 2ma® (24-31)

The result looks peculiat; on purely classical grounds we might perhaps expect
that the total cross section cannot exceed the area presented by the disc; we
might also expect to see no elastic scatteting when there is total absorption.
This is wrong; the absorptive disc takes flux proportional to x#* out of the
incidenc beam (Fig. 24-2), and this leads to a shadow behind the disc. Far away,
however, the shadow gets filled in—far encugh away you cannot “see” the
disc—and the only way in which this can happen is through the diffraction of
some of the incident wave at the edge of the disc. The amount of incident wave
that must be diffracted is the same amount as was taken out of the beam to
make the shadow. Thus the elastically scattered flux must also be proportional
to ma®. The elastic scattering that accompanies absorption is called shadbw
scattering for the above reason. It is strongly peaked forward. The angle to which
it is confined can be estimated from the uncertaincy principle: an uncereainty in
the lateral ditection of magnitude 2 will be accompanied by an uncontroiled
latetal momentum transfer of magnitude p1 ~ Fi/a. This, however, is equal to
9, so that
fi 1

~ o — 4-
b ap ak (24-32)

This agrees with the optical result § ~ N/ a. These features are observed both in
nudlear scatrering and in particle scatteting at high energies, since the central
region of nuclei and of protons is strongly absorptive, and the edges of these
objects are moderately sharp. {See Fig. 24-3.)
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Fig. 24-3. Angular disturibution of 1000 MeV (1 BeV) protons scattered by
0 nuclei. The angular distribution shows the dips that charactetize diffraction
scactering, The departures from the shape of Frauenhofer scattering in optics is due
to the fact that nuclei are not sharp, nor are they totally absorbing. The curve is
the result of a theoretical calculation that takes these effects into account. (From H,
Palevsky et al., Phys. Rev. Letrors, 18, 1200 (1967), by permissicn.)
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B. Scattering at Low Energies

‘The phase shife expansion {24-17) may be used to express the differential
cross section in terms of the phase shifts

F/ 1 ; 2
2 T @ 4 1) P sin 8,(8) Py(cos B) (24-33)
40 BT
We expect, on grounds of corespondence with classical theory, that the angulat
momentum involved in the scattering is bounded by pa whete p is the center-of-
mass momentum 4nd 4 is the range of the forces, Thus we expect that

5 %’ = ka (24-34)

With the sum in {24-33) limited, one can ty, by fitting the differential cross
section measured at a number of angles to a form like

Ao _

N
> Agfcos 8)* (24-35)

to determine the phase shifts for a finite number of Fvalues. There are ambi-
guities, for example, the cross section is unaltered when all the phase shifts
change their sign, but these can be resolved with the help of theory, continuity
from low energies, and othet tricks of the trade. The hope is that one can learn
something about the interaction from the phase shifts, which form- empirical
data somewhar closer to the theory than the cross sections do.

' 'The connection berween the phase shifts 3;(£) and the potential F{r) is via
the Schrédinger equation; the radial equation will have a solution that asymp-
totically behaves as

Ryfr) ~ % sin []er - L: + h‘a(k):l (24-36)

aside from an amplitude factor in front. Thus, given F{r), a straightforwacd way
to calculate §{&) is to integrate the radial equation numerically o values of 7
that are far out of the range of the potential, and to examine the asymptotic
behavior. This is, in fact, what one does, but this does not give us any insight
into the properties of the phase shifts. To leatn more about the phase shifts, we
consider the square well potential, We found in Chaprer 11, Section C that

c

tan §,(8) = — — (24-37)

B :
where the ratio is obtained by matching the internal to the external radial wave
function {(11-63)
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 Jiwa) _  jitka) + (C/B) ni(ka)

jlxa) " jdka) + (C/B) mka) (24-38)
in which
K= '25_’: (E+ V) B = Z;;E (24-39)

" the ’ denotes differentiation, with respect to the argument, and Py > 0 for an
ateractive potential. Thus

ki (ka) jilka) — ji(ka) i (xa)

tan 8ik) = kn/(ka) jilka) — wm(ka) ji' (ka)

(24-40)

‘This is not a particularly transparent expression, but it simplifies in some limiting
cases. i
. (a) Consider the case that
ka1 (24-41)
We do not insist that ks < /. With the help of the formulas (11-23) and (11-26)
we get .

241 (R + Liea) — naji(xa)
135... @+ U U+ 1) filea) + xaft (ka)

a0 6i(k) o (@4-42)
“after a little algebra. One can show that for large /, this drops faster than ¢ even
“if ka 33> 1. The behavior

tan §(E) ~ A¥Tt (24-43)

for £a — 0 is not restricted to the squate well potential, but is true for all teason-
- ably smooth potentials. It is 2 consequence of the centrifugal barrier, which keeps
waves of energy far below the barrier from feeling the effect of the poteatial.
{(b) For certain values of the energy, the denominator in (24-40) will
vanish, so that at these energies the phase shift passes through =/2, or more
generally through (# 4 1/2) . When the phase shift is /2, then the partial
Wave cross section

; 4x(2 + 1)

ol £) 7

sin? &;(£) (24-44)

has the largest possible value. One says that when tan §;(&) rises rapidly to
infinity and continues tising from — o, we have resomans seasering. To justify
this terminology, and explain when resonant scattering occurs, let us consider
a very deep potential, and also / large, so that

-

ka3 I ka (24-45)
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We may then use (24-42) for tan &;{£), and this will become infinite when
' (I + 1) filka) + kafi'(ka) = © (24-46)

Since k2 3> /, this condition is approximately equivalent to

(+1) ( z+1) ( 1+1)
— Cco5 { K@ — ] — sin ke — ) =0
Kd 2

that is,
I+1 I+ 1
tan (m i —x’) fat i (24-47)
2 Kt
Since the right side is very small, the resonance condition is
I+1 i+1
Kat — -l; T &ar L (24-48)
E
/ E
i
!
]

Cantrifugal barrier

1 Approximate
locations of
energies of
resonances
______________ S

Fig. 24-4. Sketch showing the square well potential with the centrifugal barrier
tzil. The dashed lines represent the energy levels in an infinite square well of range #,
and the approximate locations of the scattering resonance energies are indicated
on the right. The lower one will be much sharper than the upper one.



Collision Theory 391

Now this is just the condition (11-50) for the existence of discrete levels in a
three-dimensional box, so that resonant scatteting occurs when the incident
energy is jusc such as to match an energy level. Since E > 0, these levels are not
really bound states. As Fig. 24-4 indicates, these are levels that would be bound
states if the barrier were infinitely thick. It is not, but a particle being scattered
at just the right energy still “knows™” that there is a virtual level there.

As (24-42) shows, the phase shift is very tiny for &2 small. Nevertheless,
as ka changes and goes through the resonance, &; rises very rapidly, increasing
by «, thus the partial wave cross section (24-44) will exhibit a very sharp peak at
the resonant energy. This behavior {Fig. 24-5) is very similar to the cross section
for the scatcering of electrons by Het at the energy cotresponding to the (21)2
excited state (Fig, 18-4). In the neighborbood of the tesonant enetgy, the phase
shift rises through #/2 very rapidly. We may represent this behavior by

'y(ka)zH-l
= 24-4
tzan i E— Ems ( 9)
This leads to the partial wave cross section
42+ 1) mets de(24 1) [y{ka)**")?
7= £ 1 + tan? §; N & (E ™ Ercs)z + [’]"(‘%")Z‘HL1 :
{24-50)
5, (E) | X
®/2 ‘
!
!
L E
Eg
sin? §;
E 1
|
I
|
|
|
|
Ep ~E

Fig. 24-5. The pattial wave ctoss section corresponding to the phase shift skesched
in the upper insert.
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This is the well-known Breit-Wigner formula for tesonant cross’sections. Again,
the behavio is not a peculiarity of the square well potential, bur is characteristic
of all potentials that have a shape such that metastable srates can simulate bound
states above E = 0 in it. We just note for completeness that

2h _ 14 itan d; —1
(k) =T = 1 — ftan &
2tk -
an & y(BaY 'k

Tkl — itnd)  E— Era— iy(ka T (24-51)

If there is nonresonant scattering that is appreciable, then the scatcering ampli-
_tude is of the form

AR = [ + f7) (24-52)

At low energies, the scattering is primarily in S-states, so that we may con-
centrate on / = 0. It is simpler to derive the phase shift directly than to work out
(24-40). The solution inside the well that is regularat r = 0 is

#(r) = rR(r) = Csinxr (24-53)
and this is to be matched oato
u#(r) = sin (kr 1+ 8) (24-34)

the solution outside the well, The conrinuity of (1/#)(de/dr) at r = & implies
that

. g cot ka = k cot (ka + B)
that is,

_ (k/x) tan «z — tan ka
T 14 (&/x) tan xa tan ke

tan & (24-55)

Note thar if we define
tan §a = — tan x4
X

then

tan 42 — tan ka
tan d = ——

1+tanqatanka;mn (ga = ka)

that is,

8 = tan™! (i tan m) — ka (24-56)

K
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We have, following (24-39),

2mVoa®
ﬁ!

(k) = (ka)* + (24-37)

with V4 > 0 for an attractive potential. Thus, at very low energies, using
tan x o x for x << 1, we get

tan «a
tan 6 = § = Ea( — 1) (24-58)
Kk

When ra goes through #/2 (we imagine that we are slowly deepening the po-
tential well), which is just the condition that the well be deep enough for a
bound state to develop (cf. Chapter 1%, Preblem 1), then tan ke — « 2nd (24-55)
shows that

tan § = - @ (24-59)

tan &z
that is, & goes through x/2. In a sense, 2 bound state at zero energy is like a
resonance.
As the well becomes a little decper, we again have tan § ~ 0 (£a), and
continuity demands that the branch is such that

B~ ke (tan “_ 1) {no bound state)
Ka

tan ka2

§=ax+ ka ( — 1) (with bound state) (24-60)

kd
As the potential becomes stll deeper, a second bound state can appear, k2 goes
through 3x/2, and we have § = 2z 4 k4[(tan xa/cs) — 1], and s0 on. Thete isa
general result known as Levinson’s Theorem, which states

8(0) — 8{w) = Np=x (24-61)

where Np is the number of bound states, and the above is an example of it.
At very low energies the cross section only has the ! = 0 contribution to ir, and

it ;S i

Tk ket

4 2 2
oS (fay (ta‘:d “ _ 1) — g (““’ & 1) (24-62)

that is, it is a constant. There will, of course, be a cortection of order (£4)? to this

tesule. If we consider neutron-proton scattering, then we know that the potential

must be such as to give the right binding energy of the deuteron. If we let
fla?

E= — "%

2m
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and
k= -t +——

(effectively £ = —a? for the bound state problem), then the marching of the
wave function outside the potential #(r) = A #*" to the solution inside B sin xr
at the boundary gives

K COt k& = —a (24-63)
For £ << x, we have
[:1 1
(tan xa) ~ ( o m) ot (24.64)
ke scate Kd deuteron aa
Thus
1\*? 4
o X dra 1+ ) =— 1+ 2aa) (24-65)
ac o

Thus mzking the low energy approximation expressed by (24-64) allows us to
bypass the problem of determining the potential and rhen calculating the cross
section. The approximation only works when the binding energy is small,
The quantity 1/a is the distance over which the deuteron wave function spills
over, and this is always much larger than the range of the potential # for 2
loosely bound system. It is 1/eand not the-range of the potential thar determines
the scattering cross section at Jow energies,

In the 19305 there was great interest in the form of the neutron-proton
potential, since it was hoped that this would give some fundamenzal clues con-
cemning the nuclear forces in general. Rudimentary expetiments at low enetgies
were fitted with a vatiety of potentials. It became evident after a while that almost
any reasonably shaped potential would work, provided that one chose the
appropriate depth and range. It was shown in 1947 by Schwinger (and subse-
quently detived by Bethe in a simpler manner) that at low energies it is always
a good approximation to write

1 1
beot b= — — 4 - r#? 24-66
o 1713 rok ( )
where A is called the scattering length, and r, is the effective range. The cross
section at threshold determines the scattering length
¢ =2 dnA? (24-67)

and the energy dependence detezmines the effective range. The relation between
these parameters and the parameters describing the potential vary with the shape,
but a ewo-parametet fit to the data is atways possible. This effective range formula
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shows that if we want to probe the shape of the potential, we must go to higher
EDCIgIES.

The binding energy of the deuteron is 2.23 MeV. Thus, remembering that
in our discussion m is the reduced mass, that is, M,/2,

e hie i M

I
e N2mE B v MyctE N M E
0% 240

o = 4. 10~13 cm
eX 10 %X 33X 108N 225 =X

so that

A

— = 2.5 X 107* cm? ~~ 2.5 bams

o3

A more accurate determination leads to the prediction that the cross section at
threshold is 4 barns. The measurement, catried out with neuttons at thermal
speeds yields 21 barns!

The explanation of this disagreement came with the realization that the
spin of the neutron and the proton had not been taken into account. If the
potential were spin independent, then all spin states would scatter the same
way, that is, it would not matter whether the spins of the parricles are “up™ or
“down.” If the potential does depend on the spin, a possible form could be

V() = Pi(r) + 6, du(n) (24-68)

In this case spin is no longer 2 good quantum numbet, and the states must be
classified by total angular momentum and total spin, that is, with = 0, the four
states divide up into a 25, wiplet of states, and a singlet 1S;. These need not
scatter the same way, so that there are really two phase shifts, 8, for the triplet,
and §, for the singler. There are no triplet-singlet transitions, since the total
angular momentum J must be the same in the initial and final states. The total
ctoss section is weighted by the number of final states in each case (the cross
section involves a sum over final states and is independent of the value of the
z-component of the angular momentum), so that

3 1
¢ =0 + i : {24-69)

For spin independent forces, ¢ = ¢ = o,.
The deateron is a 25; state, so that the four barns ate really predicted for o
This implies chat

o, = 4¢ — 30, = 72 barns (24-70)
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Since we are ar threshold, this implies that

2 024
A = }1—%:—— =24 X 107 em (24-71)

The eatlier result implied that

4% 107
1 de| = F%— ~47 X 107% cm {24-72)
¥

The question of the signs of A and A, now arises. At threshold we have
kcoté = b/5 ~ —1/Asothat §, = —Akand §; = — Ak Thus, the asymptotic
wave functions have the form

sin (Br + 8:0) = sin b(r — Aua) = B(r — Au) (24-73)
The two possible cases are shown in Fig. 24-6. We know that for the wiplet states

the wave function turns ovet just before the edge of the well (since there is a
bound state), so that it must correspond to the situation A, > 0.

(a)

|
|
T
|
|
|
|
Ta
|
|
|
|
!
b) !
|

z ——

|
|
1
|
!
l
|
1

Fig. 24-6. Sketch of the r-wave solution #(r) near threshold. Qutside the range
radius # = 4, the wave function has the form C{r — A). [This is not in conflict with
(24-73), which is an expansion of sin (k¢ + 8). We could equally well have taken
the form of u(r) to be (C/E) sin (kr + 8), since the normalization is arbitrary. It is,
in fact, the interior wave function and the position of A that determine the slope
of the line.] The sign of A depends on whether the interior wave function has or
has not tarned over [cases (#) and (z), respectively.} Since the wave function must
turn over if thete is a weakly bound state {s0 that it can match a slowly falling
exponential) and since one does not expect the wave function inside the portential
10 be very sensitive to vaiations in E about zero, one expects that for a porential
thar has a bound state with Eg small, A > 0.
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If A, were positive too, one would expect a singlec bound state, with
very much weaker binding, since the internal wave function ties onto a much
flatcer asymprotic form, In fact, the binding energy would be 70 keV. Such a
bound state was not found, suggesting that A, < o.

This chaice of sign was actually confirmed by the scattering of neutrons
off the H; molecule. As we know, the H; molecule can exist as ortho-H,, with
the spins in a wiplet state, and para-H,, with the two proton spins in a singler
state. For neucrons at very low energies, such that the wavelength is much larger
than the proton-proton separation in the molecule, the scarceting amplitude for
neutton-H; scatteting is just the sum of the amplitudes for the individual
scatterings. One may show that the amplitude off para.H, is diffetent from the
amplitude off ortho-H; and these separately involve linear combinations of A,
and A,. The fact that oy, =2 3.9 batns, while oy, = 125 barns can be explained
in this way. The calculation is complicated by a number of effects that must be
taken into account, for example, that the effective mass of the ptoton in 2 male-
cule is different from that of a free proton, and that the molecules ate not really
at rest, but are moving with a distribution appropriate to the {low ~ 20°K)
temperatute, The large discrepancy between the two cross sections is not
changed much by these corrections, and it can only be explained if A, is indeed
negative.

C. The Born Approximation

_ At higher energies many partial waves conttibute to the scattering, and it
is therefore preferable to avoid the angular momentum decomposition. A pro-
cedure that leads to a very useful approximation both when the potential is very
weak and when the energy is very high is the Born approximetion, in which we
consider the scattering process as a transition, just like the wansitions studied in
Chapter 22. The difference is that here we consider the transicions

continuum — continuum

If we work in the center-of-mass system, we have effectively 2 one-particle
probles, and this particle makes a transition from an initial state, described by
the eigenfunction

| S
¥ilr) = Ve ot (24-74)
to the final state, described by
1.
iﬁ;(r) = \/_]7 erprr/n (24_75)

whezg p; and py are the initial and final momenta, respectively. The transition
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rate, following the Goiden Rule (22-55) is given by

Y& s (82 - P_-'*)
Rieg = 2nfi) | Myi| (Zm m (24-76)

The delra function expresses energy conservation. If the particles that emerge
have a different mass from those that enter, or if the target is excited, that delta
function takes 2 somewhar different form, Tt will, howevet, always be of the form
8[p2/2m) — E] where E is the enetgy available for kinetic energy of the final
particle. The matrix element My, is given by

—tw /R :p‘ r/h
_{#’V \>—jdxl' = V(r
1 ,
=4 [ dre ™" V(r) (24-77)
1
A= 5 (py — p:} is the momentum transfer. We write the mattix element as

1 - ' )

My; = ? Via) (24-78)

The integral in (24-76) may be rewtitten in the form

Ry = 2 [ a0 Y22 W(A)\*a(i E)

l

{2mh)? V2
o 1 P:de b ' 2
- TV [‘mp ( )W(“)'
= Zﬁjlrﬁ‘ %: f d9pm| V(A) |2 (24-79)

To get the last line, we noted that pydp;/m = d(fy*/2m) and cartied out the delm
function integration. Thus, py must be evaluared at gy = (2mE)'®, and we must
not forger that m here is the reduced mass in the final state.

This expression has an undesirable dependence on the volume of the
quantization box, but this is not really surptising. Our wave functions were
normalized to one patticle in the box ¥, so that che number of transitions should
certainly go down as W increases. This difficulty arises because we are asking a
question that does not correspond to an experiment. What one does is send a
flux of incident pasticles at each other (in the center of mass frane; in the
laboratory, one particle is scationary, of course). If we want a flux of one particle
pet square centimeres per second, we must multiply the above by I divided by
the volume o' a cylinder with 1 cm? base, and the relative velocity of the particies
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in the center of mass frame in the initial state. The number of transitions for unit
flux is just the cross section. We thetefore have

do =

ey | '| dﬂpfm|V(A)‘ ) {24-80)

Since in the center of mass frame the two mc1dent particles are moving toward
each other with equal and opposite momenta of magnirude p;, their relarive
velocity is

_ oo f1 1y P ]
|| = - + - —p,(ml + mﬁ) ) (24-81)

if m; and m, are their masses. Thus, if the initial and fina] reduced masses and
momenta are not the same, we have

do 1 P_{ @
20 = ‘ Tz X mred Meed (24'82)
When the initial and final particles are the same,
do mf,d | 2
— =T, | V(A 24-83)
0 e @ (24-82)

When one particle is a great deal more massive than the other, m.qy — m, the
mass of the lighter particle. When we compare the above with (24-15) we see that

flog) = V(A) (24-84)

2 iiz
Actually, to determine the sign, one must go through a mote demiled comparison
with the partial wave expansion, We will not bother to do this here.

As an illustration of the application of the Born approximation, we will
calculate the cross section far the scattering of a patticle of mass m and charge 7,
by-a Coulomb potential of charge Z,. The source of the Coulomb field is caken
to be infinitely massive, so that the mass in (24-83) is the mass of the incident
particle. For generality (and, as we will see, for technical reasons) we take the
Coulomb field to be screened, so that

—rla

V) = ZiZa e -

(24-85)

where a is the screening radius. We thus need to evaluate

e—r/ﬂ

(A = Z,Z, ® f Py e B (24-86)

r
[ ]
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We choose the direction of A as z-axis, and then get

g € —t/a P - «© i e—r,’a
dre T = dd sin 649 iy ¢ TAreest
r [ [ [ ¥

o 1 .
= 2r f rdre"* f dlcos 8) e

0 =1

2r [ _ ; _
dre r/a (GJAr — ¢ /
A Jo

I

_2r ( 1 1 )_ 4
=T \(/a) - i /e +in) T (1) + A
{24-87)
Now

2 1 2 1 2 2Pz
A=y (pr — B = 57 (2" — 2P = (1 — cos 6) (24-88)

so that the cross section becomes

do m?

a0 4x?

16x*
[p*/R)(1 — cos 8) + (/)

1
7 (ZiZ£)

B ( 2mZ Zx* )ﬂ
= \4p* sin? (8/2) + (B/a?)

Z Za? 2 '
- (4E sin® (0/2) + (ﬁ=/zme)) (24-89)

In the last line we replaced g*/2m by E, and we used 1{1 — cos 8) = sin® {§/2).
The angle 8 defined in (24-88) is the center of mass scattering angle. In the
absence of screening (# — «) this reduces o the well-known Rutherford
formula. There is no 7 in it, and it is the same as the classical formula. Had we
Jeft out the screening factor in (24-86) we would have had an ill-defined integral.
One often evaluates ambiguous integrals with the aid of such convergence
factors.

) The Bofn approximation has its limitations. For example, we found that
77(A) was putely real so that f{8) is also real in this approximation. This implies,
by the optical theorem, that the cross section is zero. In fact, the Born Approxi-
mation is only good when either (a) the potential is weak, so that the cross
section is of second order in a small parameter; this would make the use of it
consistent with the optical cheotem, ot {) at high energies for potentials such
that the cross section goes to zero. This is true for most smoath potentials. It is
not true for real particles; there it seems that the cross sections stay constant at
vety high energies, and one cannot €xpect the Botn approximation i¢ Serve as
more than a guide of the behavior of the scattering amplitude.
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As a final comment, we observe that if the potential ¥ has a spin depend-
ence, then {24-77} is trivially modified by the requirement that the initial and
final states be described by their spin wave functions, in addition to the spatial
wave functions. Thus, for example, if the neutron-protos: potential has the form

V(f) = V[(f) + dp ‘ GNVz(r)
the Born Approximation reads

M = l?fd‘r e_m"}}} V) &

where £; and £ tepresent the initial and final spin states of the neutron-proton
system.

D. Scattering of Identical Particles
When two identical particles scatter, there is no way of distinguishing a

deflection of a particle through an angle 6 and a deflection of x — @ in the center
of mass frame, since momentum conservation demands that if one of the particles

Fig. 24-7. Asymprotic directions in the scattering of two identical particles
through a center of mass angle 6.
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scatters through 6, the other goes in the direction » — 6 (Fig. 24.7). Classically,
too, the cross section for scattering is affected by the identity of particles, since
the number of counts at 2 certain countet will be the sum of the counts due to
the two particles. Thus

ea(t) = o{8) + o(mr — ) (24-90)

In quantum mechanics there is no way of distinguishing the two final states, so
that the two amplitades f(8) and f{r — @) can interfere. Thus the cross section
for the scattering of two identical spin zero (boson) particles, for example,
a-particles, is

do .
= O+ ft=—0) (241)

“This differs from the classical result by the intetference term

% = [fO* + [far— O + [0 fir = 0) + £O) f*ir - 0] (2492)

and it leads to an enhancement at x/2, for example,

do ' xy 2
(%)..-41/3) a1

compared to the resule that would be obtained without interference:

(%)nz =2 (1) ’ (2499)

2
When the scattering of two spin 1/2 particles is considered, for example, proton-
proton scactering or electron-electton scattering, then the amplitude should
reflect the basic antisymmerry of the total wave funcrion under the interchange
of the two particles, If the two particles are in a spin singlet state, then the sparial
wave function is symmetric, and

do, .
—a = |f8) + fl= — 0)] {24-9%)

If the two patticles ate in a spin criplet state, then the sparial wave function is
antisymmettic, and ’

dﬂ's 2

g = @ = fr =8l (24-96)

In the scattering of two unpolarized protons, all spin states are equally likely,
and thus the probability of finding the two protons in a triplet state is three times
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as large as finding them in a singlet state, so that

L de 3dp ldn

e 442 4 40
3HAB) — for — 02 + 16 + flr — 6)]2
= /@1 + iflx — O — 3[AO) [z —6) + fE) flz —O)]  (2497)

For proton-ptoton scatteting as well as for « — a scattering, the basic amplitude
£i8} is the sum of a nuclear term (if the energies are nat too low} and a Coulomb
‘term. Whether the identical particles be bosons or fermions, there is symmetry
under the interchange § — x — 8. P

Symmetry considerations also play a role in the scattering of particles by 2
crystal latrice, If we ignore spin, so that we do not have to worry whether the
electron does or does not fip its spin (“up” — "down" ot vice vetsa), then at
Tow energies, the scartering amplitude f{8) is independent of angle (S-wave
scartering), and the solution of the Schrédinger equation by 2 single atom
located at the lattice point &; has the asymptotic form

rb]r—l.,|
R il N R — (24-98)
[r — a4
MNow
ke — &y = k(@* — 2r - a; 4 a)?
) 2r - a; u2
=br{1— ——
( r )
o Er — kir- 8; (24-99)

and since ki, is a vector of magnitude £ and it points in the direction r, the point
of observation, if is the final momentum k’. If we divide out the phase factor

¢ *% the wave funcrion has the asymptotic form

Il/"“"fn‘r_""f_ik’. iklc +0(:2) (24-100)

50 that the scattering amplitude is

fO=fe™% A=K -k (24-101)
The total amplitude is the sum of all individual scattering amplitudes when we
have a situation in which we cannot tell which atom in the -crystal did the

scattering. This is indeed the case for elastic low-energy scattering when recoil
is not observed and spins are not measured. Thus, for the coherens process we have

fE —fArmi

ArOoms

(24-;02)

1
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If we have a simple cubic anay of latice points, such that
a; = alnd. + nly + nis) — N< pongn, €N (24-103)

(spacings are integral multiples of & in all disections) then

E e_,-A.“ — E E Z —faAsts -ua.a. ‘—fd&ﬂ:

fe=—N py=—N my=

We use
N . - . - n
Z &7 = e_'“N(1+e“+e2'“+...ez“N)
#=—N ’
e FAENAD ~ JAN+D _ el
1T e
B einf,Nﬂ,’z) _ e_"'(N'H/Z) B sin o (N + %) (24 104)
- gl _ g2 - sin a2
to obtain the result
sin? (N 4+ 1) sin? q(N + 3) sin® a (N + }
= |fi*=— Lt .’;( ) sinteaNE D o0
sin? /2 sin? e,/2 sin? o,/2
where
a: = & A, — 2av, (v = intcgcl), etc. (24-106)

We can make the generalization exhibited above, since a change a — a — 24v,
with » an integer, does not change (24-105). The expression (24-103) is not very
transparent. However, when N is large, each of the factors becomes very strongly
peaked when a., . . . are near zeto. In fact, using

sin? Nu
w4

a formula easily derived from (22-36) by a simple change of variables, we get

— 4xN é(n) (24-107}

do
20" = |f]|® (2r}® (2N)? 6(sA — 27v) (24-108)
Now the total number of atoms is (2N)? and hence the cross section per atom is
2 2
= 1182 (- k- ) 24:109)

Thus the diflerential cross section is very small, except in the directions given by

2
kK — k= : (24-110)
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where it is sttongly peaked. The conditions above are called the Bragg conditions,
d the integers v,, v, #, are called the Méller indices of the Bragg planes.

The relations just derived can be generalized to more complicated crystals.
are used to study crystal strucrure, using neutrons or X-rays as incident
icles, or using a known arystal to study X-rays that are emirred in atomic
#fansitions involving energetic photons.

Problems

1. Show that for a central potential ¥{r) = V{r), the matrix element M,
4-77) may be written in the form
1 4ok [

v 2/, r @rV(r) sin rA

My =

that this is an even function of A, that is, a function of
A= {p; — p)'/F

2, Consider a potential of the form
Vi) = Vae ™

Cilculate, using the Born Approximation, the differential crass section do/d% as
& function of the center-of-mass scattering angle . Compare your result with
the differential cross secrion for a Yukawa potential

e —r/h

Vir) = Vb .
 [Already done in {24-85)-(24-89)]. To make the compatison, adjust the parame-
ters in the two cases so that the two differential cross sections and their slopes
ate the same in ¢he forward direction at A = 0. It might be convenient to
- pick some definite numerical values for Vg, Vo, 4, and & to depice this graphi-
cally. Can you give a qualitative argument explaining the large difference between
the predicticns for latge momentum trznsfers?

3. Consider the potential

—rfa

Vir) = Vs e

If the range parameter is ¢ = 1.2 fm = 1.2 X 107 cm and Vi = 100 MeV in
- magnitude, what is the total cross section for proton-proton scattering at 100
MeV center-of-mass energy, calculated in Born approximation?

N .



406 Quantum Physics

(Noe. This calculation involves a numerical integration. It is useful o use the
relation
B2 A%

H

(pr — p* = 2p*(1 — cos 6)

to write

40

2z d (cos &) = %{ d(AY)

and do the integration between A* = 0 and A? = 4p*/f%) Give your answer in
millibarns (1 mb = 10~% cm?).
4. Suppose the scattering amplitude fot neutron-proton scatteting is given
by the form -
f@ = £ (At Bap- o) &

where & and £ are the initial and final spia states of the neutron-proton system,
The possible states are

£ = x(fT’) x({‘;} g = x(f;) XU}')
xﬂT’) X(T} x(f;) XUID
x(i’) x(f;') x(f:) XU\TT}
x(i’) X(T) x(fl’) X(T')
Use
dip - oy = e 1 2P + e
where

dy + foy o 1 o — ioy 0 0
gy = ————— = g =— =
* 2 0 o 2 1 0

in the representation in which e, = ( (1) _3 ) and x1 = ( :') ), x| = ( ‘: )
to calculate all 16 scattering amplitudes. Make 2 wable of your results and also

tabulate the cross sections.

5. If any one of the spin states (e.g., initial proton, ot initial neutron, etc.)
is not measured, the cross section is the sum over the unmeasured spin states,
Suppose both the initial and final proton spins are not measuted. Write down
expressions for the cross sections for the final neutron “up” and the final neutror
“down,” given that the initial neutron state is "up.” What is the polarization P,
defined by

pol=ol
el +ol

whete a1 is the cross section with the final neutron up and so cn.
&. Use the table computed in Problem 4 to calculate the cross sections for
tripler — triplet and singlet — singlet scattering, respectively. Show that teipler —
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singlet scattering vanishes. Check your results by observing that since {in units
of &)

lép+ 3oy =8
one has
gp - dy = 282 — 3
= 1 when acting on triplet state
—3 when acting on singlet state

Note that the amplitude is independent of mg so that ms must be the same in the
initial and final spin states. There are three states in the triplet, all contributing
an equal 2amount to the cross section, and only one to the singler cross section.

(Caution. In calculating amplitudes such as
1 1
V2 AP = X PxE)A + Begp - o) V3 G = P
the amplitudes are added for the four tenns before squaring. Can you explain
why?) :
9. It can be shown that the solution of the / = 0 Schrédinger equarion

for the potential
—ar

£
(Be ™+ 1)

3

Vir) = -2\

which behaves asymptotically like ¢~ i

ar 24 e+ B — 1)
Be™ 4+ 1)(28 — iN)

The solution that behaves asymptotically like ¢ is F(—#,”). Thus the regular
solution, which vanishes at r = 0, is

#(r) = [F(k0) F{—#&r) — F(—£0) F(&,n)]

Use this information to obtain the scatcering amplitude F(£) = [S(£) — 1]/27k
Discuss the solution for various limiting cases.

Flkr = ¢~

" References
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.
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chapter 25

The Absorption of Radiation

rd

The process that is the inverse of radiative decay of atoms, namely the
¢ of photons accompanied by the excitation of atoms, can alsp take place.
#gr photon energies exceeding the ionization energy of the atom, the electron
.excited to the continuum. This is called the photeelecrric effect, and is an im-
portant mechanism in the absorption of radiation in matter.

" Accotding to the Golden Rule (22-55), the transition rate for the process

+ + (atom) — (atom)’ + ¢ (25-1)
" is given by '

2 [ V.
i) rhy

r [ AV pe _ I 2
;i (Zarﬁ)ﬁfmp’d(zm)w”lza(ﬁw Fe Zm)

- ﬂ _mpe gz
== f 40 Gty | My] (25-2)
In the above expression, = is the electron mass, the dela function represents
enetgy conservation, Eg is the magnitude of the binding energy of the electron
in the atom, and in the last line, p, is evaluated ac the vanishing of the argument
of the dela function.

The matrix element is given by

¢ f2xhe?
wl
The vector potential is normalized, as in Chapter 22, to one photon in the

volume ¥, and ¥:(x), ¥;(x) are the wave functions for the electron in the initial
' ’ LY :

12
R = |Mj,|2§(ﬁﬁ!—ﬁs—4‘)
2m

1/2
) fd”rqb:(r) E-p T ) (25-3)

i
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and final states. If we considera hydrogenlike atom, and assume that the electron

is in the ground state, we have
1 (ZN" _zya
¢ilr) = S N € (25-4)

D

The final-state wave function should be taken to be a solution of the Schradinger
equation with a Coulomb potential with £ > 0. We did not discuss these solu-
tions when we studied the hydrogen atom. They can be written in closed form
bur they are quite complicated, as is the integral in (25-3). If the photon energy
is much larger than the ionization energy, then the residual interaction of the
outgoing electron with the ion that it leaves behind becomes less impottant,
and we may approximate ¢:(r) by a plane wave. Since we assume that we only
have one atom in out volume, we will have only one elecuron in the volume, and
hence the normalization is such chat

1
VvV

The factot I thac appeats in the phase space [/ &p/ (20%)?] corresponds to the
same normalization, that is, the two factots are not independent. The square of
the matrix element is somewhat simplified since the final state is an eigenstate
of momentum, so that

(fie o 1Y = 2 plFlEET10) (25-6)

Hence the squate of the matrix ¢lement is

2 pfig? 3
{My|? o (i) e 1 1 (UZ_) (¢ - po)?

mcf oV Vr\a

() = £ (25-5)

2

% ‘fdal' ei(k—pe,fﬁ)-r e—Zr/au (25_7)

We will evaluate the integral later. At this point we note that the rate again has a
1/¥ behavior duc to the fact that we are dealing with a single photon in the
volume V. Instead, we will consider the cross section for the phatoelectric
effect. To have a flux of one photon per square centimeter we must have a density
of photons 1/c per cubic centimeter (so that 2 cylinder of unit area base and
length ¢ cotresponding to.a time interval of 1 sec contain one photon), hat is,
we must multiply the rate by V/e. We get, combining (25-2) and (25-7} the
differential cross section

do 2 mp. eNtaghict 1 f Z
o _ 2w mpe (VI D (2] (- poy
< h(2ah)y \me w m N\

. 2
[d*r e.l(k—pr/h)-r e—eraa (25-3}

1
Y —
3
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In this expression 42 is the solid angle inte which p., points. The integral over all
electton directions yields the total cross section o for the photoelectric effect.
If the target atoms are distributed with a density of N atoms per cubic centimeter,
then in a slab of target material of area A and thickness db, there are NA dx target
atoms. Each atom has a cross section o fot the reaction under consideration, so
that the total effective area presented to the beam is NA o dx. If there are #
incident particles in the bombatding beam, then the number of particles that
interact in the thickness di of the target is given by

interacring particles  cross section

incident particles total area
that is,
) Ae dx
an_ _NAode i (25-9)
7 A

‘The minus sign indicates that particles are removed from the beam. Integration
gives
#(x) = mge N (25-10)

whete r, is the number of incident particles and #{x) is the number of particles

"left in the beam after traversing a thickness x of the target. The quantity A =

1/No has the dimensions of a length, and is called the mean free path. One some-
times speaks of the mean free path for the phoroelectric effect, for pair produc-
tion, and so on, even though what is measured is the cross section.

To get an idea of the magnitudes of mean free paths, note that N = Nop/ A
where Ny = 6.02 X 10% is Avogadro’s Number, p is the density in grams per
cubic cenrimeter and A is the atomic weight. Cross sections for molecular
collisions can be estimated from the properties of gases, and they tum out to
have magnitudes of the order of 107!* cm?, consistent with the fact that atomic
dimensions are of the order of 10~% cm.! Is this  reasonable guess for the photo-
electric cross section? We shall soon examine the reasons for why it is not.
In the meantime we write the mean free path in centimeters, in a material of
density p and atomic weight 4, with the ctoss section expressed in units of
10~ cm?, called barns thus,

_1_A 1
T Ne  p 602 X 10%¢
A4 167
== 25-11
p e (bams) ( )

1By the same token, nuclear cross sections tend to be of the order of 1672 cm?
{batns), particle physics cross sections are of the otder of 10727 cm? (millibarns}, going
down to microbarns for rater teactions, and even down to EQ—* cm? for the extremely rare

neutrino reactions at low energies.
*
.
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To evaluate the cross section in (25-8) we need to work out the integral
f dr OB XN e (25-12)

If we use the integral evaluated in (24-87), which, with a slight change of nota-
tion reads

. & 4
fdal. el 5 _:A! (25-13)
we can, by differentiating with respect to u obtain
_i Bwp
A o 5-
[ G S Ay G314)

50 that we can finally calculate the cross secrion. After some judicious combining
of factors, we end up with

do Dee L l:'\e)2 1
—_— = G, 22— )
dfl 322 L] ( ﬁm ) ( me (Z2 + ﬂnzA,}" (25 15}

(k —pJ) _ (py— P
i i

where

A=
Since the electron and photon energies are related by
Fw = EB + P“ {25-16)

we see that for energies quite a bit above the binding energies, fiw =< p2/2m.
Hence

li EP. 2P‘ 2
ﬁn,(W) (e po

1 1 [ fhwl? fid  ~ =
Al= o @ o= nT[(“) ‘27P=P7'P=+P=’]

[1

o Ve » =~
=2 (1 — P p-) (25-17)
for nongelativistic electrons, p. << me.* We have used the notation p, = fik for

* For relativistic electrons one should really use the Dirac equation to describe the
process, Effects other than the photoelectric effece are more imporant when E, == 1 MeV.
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the photon momentum, 2ad as usual the ~ denotes the unit vectot. Thus
da . e p.)?
6425402 (_P_ ( p )

a9 mc) )2 e~ -~ Y|
[”m(“ 7P='P*)]

]
G4Zbay? (—P’—) (z- pot

me

= . pgﬂ Ve o ~ £l
|:(aZ) + Y (1 - PPy (25-18})
If we choose the photon direction to define the z-axis, and the two photon

polerization ditections &V, £ to point in the x- and y-ditections, respectively,
then, writing

p. = (sin 8 cos ¢, sin & sin ¢, cos ) (25-19)

we have (p. - ) = sin? # cos® ¢ and (p. - £€®)* = sin® # sin” ¢ so that the
average of the numeratot ovet the two palarization directions (we are calculating
the photoeffect cross section with unpolarized photons} is

W: L (sin® @ sin® ¢ + sin? @ cos® @) = § sin® @ (25-20)
also
f).; -py = cos P (25-21)
so that, writing p.2/2m = E, we get
do 32472 Zéatag{Ef mct) 1 sin® §

a0 [(GZ)Z + ZE, (1 — 2 os 0)]‘ (25-22)
me ¢

For light elements, the condition that we imposed eatlier, fiw 3> Ep, which is
equivalent to

E> } m*(Za)? (25-23)

is satisfied over a reasonably wide range of enetgies. If we insert (253-23) into the
ctoss section, we find that the denominator simplifies, and we ger

do B\t sin? @

— = 32 ZhaBat | — = v

2 \/_ - o ety (mcz) v . (25_24)
1~ —cosé

3

Let us discuss various aspects of this formula.
(1) Firse, the vague guess thar since atomic sizes tend to be of the order
of 10~8 cm, the cross sections should be of order 10~ ¢cm? is wrong! It is true

that the factor 4,® is of that magnirude, but it is multiplied by (1/137)% which is
. e ]
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dimensionless, but hardly negligible! We should try to understand how one
could be so wrong in order to have some guidance what one must be careful
about in making estimates. If we ignote the last angular factor, which we will
discuss later, we see that we may, with the help of

=31ml

write the factor in front as

2\ 72 1)
2,\/5 40225'15 (m?) 32492256!8 (_C_)

Ve

a9 \? ¥ A4 7
32 (_) a (—) (25-25)

4 7,

This is 2 more useful form, It shows, fist of all, the presence of a single factor o,
which should always be present when a single photon is emitted or absorbed.
'The coupling of the vector potential to a charge is proportional ta the charge ¢,
and the square of this will lead to the a. ‘The factor (#o/Z)* is 2 better measure of
the area of the atom than ¢, since we ate considering 2 hydrogenlike atom of
charge 7. Whar temains is a racher high power of the ratio of the “orbital”
velocity of the electron in the atom to the velocity of the outgoing free
electron,

It is the ratio (aZc/v.) [racher than just {¢/#.), which is also dimensionless]
that appears, because the matrix element involves the overlap between the free
electron wave function and che bound electron wave function, that is, the square
matrix element is related to the probability chat 2 measurement of the momentam
of the bound electron yields p,. The functional dependence flaZc/v.), in this
case the eighth power,? cannot be guessed at on general qualitative grounds.
For example, if the electron wave function were Gaussian [:(r) = e~ ™%, the
falloff with increasing velocity would be much faster than the eighth power.
The reason why a guess is hatd to make is that the momentum distribution of
the electron is localized in a region of spread

H kZ

Ap ~ ~ ~ .
\p Iz 7o Zamc (25-26)

and for p, 3> Zame one is far out in the tail of the momentum distribution. This,
again by the uncertainty relation, depends on the small r-distribution of the
wave functicn, and depends sensitively on the state, in particular on the angular
momenturn. This does make photo-disintegration in nuclear physics 2 very
useful tool.

3'There is a factor p. in the phase space so that the matrix element squared gives an
eighth power of {adZ /v.).
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(2) The angulat distribution of da/d$ is given by

sin? 8

F@) = [t — (z./c) cos 6]*

(25-27)

We note, first of all, that the ctoss section vanishes in the forward direction.
This is a consequence of the fact that photons are transvetsely polasized. The
mattix element is proportional to p. - ¢, and when p, is patallel to the photon
momenturn, this factor vanishes. The factot in the denominator has, because of
the fourth power, 2 strong influence on the angular distribution. When v./¢
appreaches unity, this becomes very dramatic, but even for modetate »./¢ there
is significant peaking in the near forward direction, whete the denominator is at
its smallest. This corresponds to the minimum value of the momentum transfer
between photon and electron (p, — p.)t.

More detailed calculations need to be done to cover the relativistic region.
The formula derived above works well in the region of its validity. At very low
energies, a more acrurate wave function for the outgoing electron must be used.
Such a wave function will teflect the Coulomb interaction between the nucleus
and the electron. There will, of course, be no photoeffect below the threshold for |
ionizing the least-bound electron from an outer shell, As che energy increases
above the threshold, electrons from deeper shells will be photoproduced. If one
plots the integrated cross section, or preferably the mas aborption coefficienss
Ne/p, as a function ¢f the photon wave length, one finds the data shown on
Fig. 25-1. The so-called K-edge corresponds to the ejection of the n = 1 elec-
trons; the L-edges cotrespond to the various electrons in the #» = 2 states. The
edges occur at the biading energies of the various electrons. Moseley's empirical
law states that they are located at

Z — o)
E=1362 ="y (25-28)
7

where o, the “screening constants,” are approximately given by ¢, = 21 - 1,
This formula is just what we expect for the ns orbirals, and the screening is the
effect of all the other s electrons.

At relativistic energies the cross section drops less precipitously, with an
(E/72)~" behavior instead of (E/m)~/* but by the time encrgies of 0.5 MeV are
reached, the photoelectric effect ceases to be of any importance as far as the
absotption of radiation is concemed. In the energy tegion of 0.5-5 MeV, say,
it is-the Compeon Effect that is the dominant absorptive effect.

Here free electrons scatter photons, At low frequencies the effect can be

1In calculating absorption of radiation, the result that we derived must be muluphecl
by 2, since there are rwo electrons in the ground state, except in hydrogen.
- 5This is equal to Nyo/A where Ny is Avogadm s number and A is the atomic weighrt.
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Fig. 25-1. Mass absorption coeflicient No/p for platinum as 2 function of pharon
wavelength.

understood classically; electromagnetic radiation impinging on the clectron
accelerates it, and the radiation emitted by the accelerated charge is the scattered
radiation. The classically calculated Thomson cross section is

8r f 2 \?
-5 )

In quantum mechanics, the scattering amplitude {mattix element) must be pro-
portional 1o ¢, since two photons are involved, Since the pertuthation in the
Hamiltonian is

¢ e
—_ . — A -
P Alen) + 5 (EA (x,7) (25-30)

when both terms in the expansion of (22-11) ate kept, we see than an ¢ contti-
bution to the scattering amplitude can come from rwo soutces.

(i} the first source is a first-order contribution from the term A 1)/ 2met,

(ii) the second source is a second-order perturbation term from the
coupling ¢p - A(r7)/me. Since we have not developed the second order
perturbation formalism, we will restrict ourselves to stating the results.

(2) At threshold, with the gauge that we have been using, V-Alr) =0,
the whole amplitude comes from the term involving 2ANT 1) 2mc?.

{(b) The matrix element in second ordet has the form

_ 5 (flep-Afmeln) (rlep-A/meli)
] E, — E:

(25-31)
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where the “sum’ over intetmediate states 'n” also implies integration over all
the momenta, when “n" includes continuum states.® It is not enough to include
intermediate one-¢lectron states corresponding to the sequence

Tite—ed =yt

and the intermediate states containing an electron and two photons, correspond-
ing to the process

ttyv—2vitwywt+tdowty

It turns our that it is necessary to include the possibility of the *virtual'* creation
of an efectron-positron pair by the incident photon, followed by the anaibilation
of the positron by the incident electton, with the emission of the final photon, as
in

et vioeiteat e oyt oy
and the process
et rvimatyitvuteatet Syt
The calculation leads to the Klein- Nishina formula

_ AN x 2(1+x)_1
o= 2x (mcz) {_xz [71%-2:: xlog (l—|—2x)j|

1 1+ 3x
T les 2~ Zx)’}
fiw

which is in excellent 2greement with experiment. At low frequencies this becomes

c= 8—;(;—;)! (1 - 2%) (25-33)
and at high frequencies (x 33> 1) this reads
et \1

g7 (;F) . (log 2x + &) {(25-34)

Thus the Compton ctoss section, too, drops off at high energies. At energies
above a few MeV, the dominant absorptive process is pair production.

It is a remarkable face that a photon at high enough energies, fiw > 2mc?
can “‘materialize” into an electron and a positron (Fig. 23-2). The latter can be

¢ The fact that (25-31) locks like an off-diagonal version of the second-order encrgy
shift is, of course, ao accident,
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Fig. 25-2. Toral absorption coefficient for lead and zluminum as a function of
energy, in units of the electron rest energy (0.51 MeV). The photoelectric cross
section for Al is negligible on the scale depicted here.

propetly called an “antielectron”; it has the same mass as the electron and the
same spin, but its charge and magnetic moment have the same value with
apposize sign as those for the clectron, and the nonrelativistic coupling with the
clectromagnetic field is obtained by the replacement of p by p — eA{rs)/r.
Such a materialization can only occur in the presence of a third parcicle,a nucleus,
for example, since energy and momentum conservation cannot hold for the

process

y—e+ et

To see this withour going thiough a long kinematical calculacion, consider the
inverse process ¢ + ¢+ — v in the center of mass frame. The electron and positton
have equal and opposite momenta, so that the final state has energy
2(m2c + p%*)1? and momentum 0. A photon of energy E must carry momentum
E/e. Tf there is a nuclens present, it can absorb momentum and energy (for a
massive nucleus this will be very small, ?/2A{), so that it becomes possible to
balance energy and momentum.
The calculation of

~ -+ nucleus — ¢ + ¢+ 4 nucleus

is beyond the scope of this book. The theoty of quantum electrodynamics that
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is used in these calculations also shows that we can transfer particles from one
side of the equation to the other, provided we change the transferred particles to
their antiparticles. Thus one predicts that

nucleus + ¢+ — nucleus + ¢ 4 5

should also occur, with a matrix element very closely related to that of pair pro-
duction. This is in agreement with experiment, and the last process is responsible
for cosmic ray showers.

An incident ¥ ray of very high energy (it may come from the decay
n° — 2y, with the #° produced when a ptimary cosmic ray proton hits a nucleus
ar the top of the atmosphere) will make a pair, with ezch member cartying
roughly half the original energy. Each member can produce a photon, as indi-
cated above,” and the end products can make further photons and pairs. Showets -
coming from extremely high energy events occutring at the top of the atmos-
phere can cover areas of several square miles! Less spectacular showers in countets
are used to identify photons or electrons. An incident particle thar is charged,
but much heavier, will be deflected less, and will therefore radiate less,

Detailed calculations show that energy lost in material through these
pracesses follows the law

E(x) = By e~ " (25-35)
where the “radiation length” is given by

(m2t/h%) A

L= -
4Z%*Nyp log (183/Z113)

(25-36)
where Ny = 6.02 X 10% is Avogadro's number, # is the electron mass, A is the
atomic weight, Z is the charge of the nucleus, 2nd p is the density of the material
in grams pet cubic centimeter. The “pair production length” is given by
9
Lo =L (25-37)

The formula is pot good for very low Z. Typical values of L are

Air 330 m
Al 9.7 cm
Pb 0.53

Bremustrahlung is the dominant energy Joss mechanism for electrons at high
energies. At low energies ionization dominates, Lack of space keeps us from
discussing this essentially classical effect,

* This process is called Bremigrablung, and can be understood classically; a charge
deflected in the Coulomb field of the nucleus is accelerated, and hence radiates.
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Problems

1. Calculate the cross section for the process
v -+ deuteron — N 4 P

The procedute is the same as that for the photoelecuic effect. In the calculation
of the matrix clement, the final state wave function is again

Y
_ P /A

#‘f (l') = \/ v

where p is the proton momentum. At low energies the wavelength of the radia-
tion is much larger than the “size” of che deuteron, so that £%" = 1. To calculate

[d”'r e ir)

observe that .
MpEp Mp
W.“I““—ﬁg Vi — FV(’)\%’=0

whete the reduced mass Mp/2 was used. Now use integration by parts to show
that

0= fd“r P [W- -+ M;EB ¥ — MP;{T) "’i]

2
- [da,. e—in-rﬂ (_ b4 + M_PEE) i — %[d’r e—in-rfh V(!') ¥

o

leading to
(E — Ep) f Pre® iy = — f dor e V() g

Since the integral is only over the range of the potential, which is very shorr, we
can replace e~ " on the right side by 1. Another use of the Schrodinger
equation leads to ‘

— [d“r ¢TI = Ezafdsflh(?)
with Ep the deuteron binding energy = —2.23 MeV. For the calculation of
this integral take

e—o:(r—ro)

N
Yilr) = r>>fe
Vv 4T
=0 r< o

propetly notmalized. For what energies would you expect the photon wave-
length to be much larger than the range of the potential ro 2= 1.2 fm? (The
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-justification for ignoring the integral inside the potential tange (r < )} lies in
that ro < 1/ where o = MpEg/R?). -
2. The principle of detailed balance relates the matrix elements for the
reactions
A+a—B+ b I
and
B+b—A+a 1
thus

2 M| =30 | Mn|®

where the sum is over both initial 2nd final spin states. Taking into account that
in the calculation of a rate or cross section one averages over the initial spin
states and sums over the final spin states, show that for the rates

(2Ja+ D+ 1) dRy _ @l + 12N+ 1) 4R
‘bb’(dpb/dﬁb) 42, Paz(dpﬂ/dEa) dQ,

where J,, Ja, Jb, ]z are the spins of the particles, p, and #, ate the center of mass
momenta of particles # and 4 (I and II must take place at the same total energy),
Ey and E, are the corresponding eneigies of the particles, and 4Qs, #Q, are the
solid angles in which # and « are observed. Use this result to express the cross
section for the radiative capture process

N+P-»D++y

in terms of the cross section calculated in problem 1. Note that the factor
(2] + 1) for photons is 2 since thete ate only two polarization sates, and also
the spin of the deuteron is 1.

3. The cross section for the reaction
w4+ D—P+ P
has been measured for incident x* laboratory kinetic epergy of 24 MeV, and
found to be equal to 3.0 X 10727 cm?®.

(2} At what laboratory energy would one be able to carry out a test of
detailed balance by measuring the cross section for

P+P—x"+D

(The pion mass is m.c® = 140 MeV; My = 940 MeV; M, == 2M,).
(b) Given that the spin of the #* is 0, what is the predicted cross section
for this reaction?

4. What is the radiation length in liquid Xenon, for which Z = 54,
A = 131, and p = 2.09 gm ¢ ®?

5. Suppose the electron were bound ro the nucleus by a square well po-
tential, Calculate the energy dependence of the cross section for the photoelecuric
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effect. Assume that the photon energy is much larger than the binding energy of
the electron, and that the potential has a shoit renge. (Hins. See problem 1.)

References
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chapter 26

Elementary Particles
and Their Symmetries

In this chaptet we discuss a number of topics related to the fundamenta]
interactions of elementary particles, Although this chaptet is necessarily mate
qualitative than the others, because whatever theory exists involves concepts
too advanced to be discussed in a quantitative way, we will see that quantum
concepts are essential in the analysis of a variety of complex phencmena.

A. Electrons and Positrons

In Chapter 25 we mentioned thar in the presence of a second body (to
conserve momentum) a photon can matetialize into 2o electron and a positron,
The positron can  very appropriately be called the sntiparticle corresponding
to the electrons it is identical to it, except for the sign of the electric charge and
other electromagnetic propetties {e.g.,, opposite magnetic dipole moment),
When an electron-positron pair is produced in a bubble chamber, say, a very
characteristic pattern caused by the fact that the two particles bend oppositely
in a magnetic field is apparent (Fig. 26-1). Antipatticles are & necessary conse-
quence of relativistic quantum mechanics, and the positton was predicted in
1928 by Dirac, two years before Anderson discovered it experimentally,

We live in 2 world built of protons, neutrons, and electtons, Positrons are
tare, since they have to-be produced with the expenditure of energies of at least
2m* (1 MeV) (corresponding to the production of a pair at rest), and thus they
have been studied oaly under special experimental circumstances. Nevertheless,
all experience and the face that there exists a rematkably successful theory of
quanium electrodynamics symmettic undet et s ¢ interchange indicate that elec-
tomagazstic interactions do nor distinguish, except for the sign of the electric
charge, between electrons and positrons. It is a bold extrapolation from this to

423
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Fig. 26-1. Bubble chamber picture of the convession of v-rays into electron-
positton pairs in the presence of matter (hydrogen). In one case the pair is produced
in the coulomb field of an electron, in the other case it is produced in the coulomb
field of a proton. The tacks curve in the magnetic field of the bubble chamber,
with the faster particles bending less. (Courtesy of the Lawrence Berkeley Labora.
tory, University of California}.
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the general notion of the invariance of the laws of physics under particle-
antiparticle conjugation, in which not only electrons ate replaced by positrons
(and vice versa) but protons by antiprotons, neutrons by antineutrons, and so
forth. With this generalization, we can conceive of antimatter, consisting of andi-
nuclei, with positrons bound to them by attractive Coulomb forces. A conse-
quence of the invariance principle is that all the physical cbservables are the
same, so that an observer could not tell whether he and his environment were
made of matter or antimatter. Whether the laws of physics obey this conjectured
invariance law must be settled by expetiment. It now appears that the laws of
the strong (nuclear) and electramagneric interactions do, but that the laws of
the weak interactions do not. The existence of antiparticles follows from quite
genetal laws of relativistic quantum mechanics.

Let us concentrate on positrons for the time being and ask what happens
when they are produced in the vicinity of clectrons. Sooner or later they will
collide with an electron, and in the inverse of the production process, they will
annihilate each other, with the liberation of the total energy consisting of the
kinetic energies and the sum of the rest masses 2m.c® This enetgy will be
liberated in the form of radiation. To conserve energy and momentum, a third
body (e.g., a nucleus) must be present, or at least two photons must be pro-
duced, as was pointed out eatlier. A fascinating possibility is thar the positron
loses energy by ionization, that is, long-range collisions with electrons, so that
slowing down rather than annihilation in flight occurs. The positron will
genenally be captured into 20 orbit abour an electron. The positron and electron
attract each other and form an atom that we call positronium. The atom is de-
scribed, in fitst approximation, by the same equation as was used for the hydro-
gen atom, except that the reduced mass is p = my/2, 5o that the ionization
energy is 6.8 €V, the “radius” is 1 A instead of 0.5 A and so on. Positronium
daes exist and all of its properties ate in accord with expecrations.! The ground
state of positronium is an / = 0 state, and of the two possible states, 15, and 35;,
the former lies lower. This is what the hyperfine splitting (Chapter 17) would
indicace, but the situation here is complicated by the fact that the possibility of
annihilation teally makes this problem different from that of the hydrogen atom,
and the hyperfine interaction is partly cancelled by purely relativistic effects.

Once positronium is in an S-state, the wave functions of the two particles
overlap significantly, and annihilation-becomes likely. The 15, state can decay
into two photons, and the tansition rate can be estimated as follows. For each
photon emitted, the marrix element will have an ¢ in it, so char the squate of the
matrix element will involve ¢4, or, equivalently, &®. The annihilation rate must
also be proportional to the probability that the two particles ovetlap, A reason-

! This includes such esoreric effeces s the spin-orbit coupling, hyperfine structuse,
2nd an effective imaginary part in its potemtial due to the possibility of annjhilation into
two phorons.
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able measure of this is 1¢(0) |2, whete $(0) is the hydrogenlike wave functicn of
the ground state, evaluated at zero separation between the particles. The value of
this is (1/x)}(1/40)?, whete 2 = /ucee. To make the dimensions come out right,
we must multiply by 2 {length)® (time)~! made up of , ¢, and g, but without
any factors of e. The estimate {5 thus

RN AN A
Rz"w“(ﬁ)(pc) P
1y (™
=('2—T)a (ﬁ) (26-1)

The constant 4 is not determined by this dimensional argument. The rate thus is
R = 0269 X 10" sec™" (26-2)

Comparison with the experimental rate of 0.8 X 10 sec™? shows that the
constant # is approximately 3.0. A proper evaluation of this constant really
requires relativistic quantum mechanics, since we require the matrix element
for the annihilation of a particle and an antiparticle, and this concept does not
enter into the nonrelativistic Schridinger equation.

Positronium in the 3%, state can also annihilate, but must do so with the
emission of three photons. To understand this, we must consider the properties
of positronium under charge conjugation, that is, under the interchange et ++¢ .
We obsetve (cf. Fig. 26-2) that charge conjugation can be accomplished by (1) an
inversion, accompanied by (2) a spin exchange. A singlet state, with § = 0, is
odd, and a triplet state with § = 1 is even under the latter exchange, so that the
effect of spin exchange is (—1)%*". The effect of space reflection is usually
{—1)4, that is, even angular momentum states are even under reflection, and so
on, but there is an additional factor of (—1) that arises from the fact that anti-
particles of spin 1/2 (also 3/2, 5/2, . . .) have patity opposite to that of particles.?
This implies that we can write for the effect of charge conjugation

€= (—1)81 (26-3)

Thus the ground state 'S; is even under charge conjugation, and the state just
above it, 35, is odd. Similatly, 1P, is odd under charge conjugation, while
3P, 1,0 i even, and so forth, Now the elecnomagnetic field is sdd under conjuga-
tion. For example, the equation

v -E = 4xp (26-4)

2This follows from quite general properties of relativistic quantum mechanics,
and has experimenta] consequences aside from the one mentioned above. For example,
the polarization vectors of the two photons produced in positrenium annibiltion are pre-
dicted to be preferentially perpendicular to each other. This is borne out by experiment.
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Spin }
exchange !

Fig. 26-2. Equivalence of charge conjugazion and {inversion) X (spin exchange)
for electron-positton system.

can only be invatiant under charge conjugation if E changes sign when the
charge density does. In effect, under charge conjugation,® e — —e. This leads to
a series of selection rules, which state that positronium in a state with a given
Sand / can only decay into an even number of photons if § + /is even, and into
an odd number of photons if § 4 7is odd. Thus the %5, state can only decay into
an odd number of photons. Since each additional photon reduces the rate of
decay by a factor of e, at least, the smallest allowed number of photons is
favored.

B. Baryons, Antibaryons, and Mesons

In the lasc section we extrapolated the notion of charge conjugation to
particles other than electrons and on that basis made a conjectute about the
existence of antiprotons and antineutrons. These particles have actually been
found to exist, although it is difficult to make them, since it takes a center of
mass energy of at least 2M,¢* 2~ 1380 McV to make a pair at resc. The antiproton
has been found to have charge —1, mass equal to that of the proton, magnetic
moment equal and opposite to that of the proton, and other properties expected
from theory. Since the ncutron is neutral, one might ask what distinguishes the
antineutron from the neutron. The answer is that there appeats to exist a

3 Under charge conjugadon p — (s/¢) A — p + (¢/c) A. We do not change the sign of
the number ¢/c but instead change the siga of A, or, equivalently, Eand B, when we catry out
charge conjugation. This means that the polarization vector ¢ is wansformed into its negative.
Since transition rates involve the squares of quantities involving r, we see that these ob-
servable quanrities are invariant under the transformation.

1
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quantum number like charge, called Baryor Number, Np, which is conserved, and
which has value +1 (by definition) for nucleons (neutrons and protons) and —1
for antinucleons.

The notion of 2 conserved baryon number arises from the empirical obser-
vation that the reaction in which e~ and P annihilate does not seem to occur. If
the reaction

e+ P— “stuff”
ot, equivalently,

P— ¢t + “stuff”

could occur, then matter would not be stable. We can trivially set a limit on the
lifetime of the proton; the existence of very old rocks shows that it is longer than
4.5 X 10° years. Actually one can do berwer. Either of the above reactions
occurring in a scintillator would give rise to radiation thar could be detected.
By properly shielding a large scindillator to eliminate pulses caused by external
sources such as cosmic rays, and looking for “spontaneous” pulses, one can
set a limit on how often the above reactions take place in, say 10* aroms.
The absence of such spontaneouns pulses over a cermain period of observa-
tion has been translated into a lower limit on the proton lifetime equal to 2 X 10*
years! It is fair to say that the proton is stable.
Actually the reaction

e+ PN+t

does occur in nuclei, so thar it is not quite right to say that the number of protons
is conserved. The correct sratement hete is that the number of protens plus the
number of neuttons is conserved, just like charge. This number is what we call
the Baryon Number. We postulate that under charge conjugation this quantum
number, just like charge, changes sign. Thus the antiproton and che antineutron
have Nsz = —1, Electrons and posittons have Np = 0, and this is the formal
explanation for the absence of the reactions ¢~ -+ P — “stuff,” and so on.
Baryons and antibaryons car anpihilate into “stuff”” that must have Ny = 0, but
may have charge 1, 0, —1 in the processes P + N, P+ P (ot N+ N), and
P + N. Whatever the annihilation products are, they must have a total energy
of at least 1880 MeV and this is a very distincrive feature of nucleon-antinucleon
annihilation.
Although it is consistent with the symmetty laws to expect

P+ P— {ete~ pairs) + photons

to occur, it turas out that most of the time the annihilation products are z-mesons
also called pions. These are particles first predicted by Yukawa in 1935 to expiain
the short-range nuclear forces in a manner analogous to the long-range electro-
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magnetic forces. The pions were viewed as counterparts of photons.* Pions are
not part of pur everyday experience, since they have shor lifetimes, 10—# sec for
the #* and 107'® sec for the x°. They all have rest mass of the order m,¢? =
140 MeV and Np = 0. The x~ is the antiparticle of the +; their masses and decay
patterns are the same. Pions are responsible for at least part of the nuclear
forces, and as such must be rather strongly coupled to nucleons. Thus the anslog
of /hic (£21/137) is a number g%/ 22 15. Hence the rule that the smallest
number of photons in 2 reaction is most probable does not hold for pions. In
the annihilation

P+ f’—>pions

the number can vary quite a lot, consistent with the constmint provided by
enetgy conservation. The average number appears to be around 5, when the
nucleon and antinucleon are at rest. Pions have been found to have spin 0 and
negative patity, and thus ate called peudosealar particles. Since they ate spinless,
they cannot have any electrical moments, for example, magnetic dipole moment,
Thus the only difference between a x* and a #~ is its charge, and the =° is its
own antiparticle, like the photon.

C. Isotopic Spin Conservation

The neutron and the proton are really very much alike. They differ in (a)
their charge, (b) their magnetic moments, and (c) their masses, the last to about
one part in a thousand. The nuclear forces, on the other hand, do not appest to
distinguish between neutrons and protons, Thus the binding energies of mirror
nuclei, thac is, nuclef that transform into each other when neutrons are replaced
by protons and vice versa, are almost equal, with the discrepancy exphinable in
terms of the difference in the Coulomb energies. If the neutron-proton mass
difference also were an electromagnetic effect (2nd its size is consistent with this
possibility), then one could blame all the differences between neutrons and
protons on electomagnetism.,

Heisenberg and Condon made the bold proposal that the nature of the
nucleons must be such that if it were possible to *“turn off” their coupling to the
electromagnetic ficld, that is, the electric charges, then there would be no way of
distinguishing between proton and neutron, and that these two particles should
teally be viewed as two substates of a single entity, the nucleon. This notion
grew out of the realization thar an electron with spin “‘up” and an electron with
spin “down” in a magnetic field are still the same electron, even though the
energy is different. In this case the magnetic field can be tumned off, and the
“symmetry breaking” be made to disappear. For nucleons, the symmetry-

% See Special Topics section 5 on “The Yukawa Theory.”



430 Quantum Physics

brezking eleceromagnetic interaction cannot really be rurned off experimentally,
but this is no barriet to imagining a world without electromagnetism. The pro-
posal was that the analogy with spin should be quite exact, that is, that the
proten and the neutron should be “up™ and “down’ states of an “isoinpic” spin 1/2
entity cabled the nucleon. The nucleon is an I = 1,/2 state and the proton and
neutron are eigenstates of I, with eigenvalue +1/2 and —1/2, respectively.
The antiproton and the antineutron also form a doublet, but now it is the
antiproton that has I, = —1/2, and the antineutron I = +1,/2. Nuclear forces
are now “nuclecn-nucleon forces,” and the equality of P-P, N-P, and N-N
forces can readily be understood if one assumes that the nucleon-nucleon
potential conserves the total angular momentum in isotopic spin space, that is,
thart fotepic spin is conserved.

Two nucleons, each having I = 1/2 can form an [ = 1 wiplet and an
I = 0 singlet. The states, in complete analogy to the spin triplet and singlet,
have the form

PP
1
triplet W (PN + NP) singlet % (PN — NP) (26-5)

NN

The notation P and N here is the isotopic spin analog of spin “up” and spin
“down’" spinors xi, x—.

By the Pauli Exclusion Principle, the P-P states are limited to rorally
antisymimetric states 'So, P2 y,0, 1Dy, . . . . I-spin conservation demands that the
N-P system in the I = 1 state also obeys the same symmertry. Thus the P-P
and N-P forces in these states will be equal (and equal to the N-N force), but
the forces in the 38, 1Py, 3D3 0, . . . states of the N—P system can be different,
since these cortespond to I = 0. That the forces are different is shown by the
fact a deuteron without a conresponding P-P and N-N bound state exists. This
situation is analogous to the existence of spin-dependent potentials that give a
different force for the mriplet and singlet spin states, even though the total
angular mormenturn is conserved. If we introduce operators I (= 1.1, L) obeying
the "angular momentum™ commuration relations

o) = i, {cyel) (26-6)

we can construct the whole isotopic angular momentum formalism in exact
analogy with the ordipary angular momentum formalism, except that there is no
apalog of otbital angular momentum connecred with motion in space. [-spin
conservation implies that in the absence of electromagnetic interactions, the
Hamiltonian has the property that

HIl =0 (26-7)
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Furthermore, cigenstates of I* and I, with eigenvalues I(I + 1) and —I <
I, < I'can be used as basis states. The existence of three pions, =+, #°, and #»—,
all with spin 0 and patity —1 and all of almost the same mass, fits in very well
with the existence af the symmetry; we can say chat pions form an I = 1 tripiet,
with the I, = 1, 0, — 1 states represented by =+, z°, and 7.

The mere existence of these i-spin multiplets may be viewed as evidence
for the uaderlying symmetty. We can, however, point to several other more
ditect manifestations of the symmetry of the stromg interactions that are seen in
the nucleat forces,

(a) Nuclei consisting of Z protons and A-Z neutrons will have

I - Z—(A-2)
e 2
=Z— A2 (26-8)

so that any one of its states belongs to @ multipler of total I at least as large
as |Z — A/2{. One might hope to find evidence for other members of these
multiplets in neighboring nuclei, and such evidence has indeed been found.
The /-spin partners of a given set of levels are called analog states and have been
the object of intensive study by nudlear physicists, Figure 26-3 shows a par-
ticularly clean example of multiplets. 80, "*F, and ®Ne have proton/neutron
numbers (8,10), (9.9), and (10,8), respectively. Fot the first and third, the ground
states could belong to the same 7-spin triplet; the spectrum shows that 1%F has a
ground state thar has spin-parity 1%, so that it cannot belong with the 0+ ground
states of 8Ne and 80, but that thete is an excited OF state that could be the
I; = 0 member of the tripler. Furthermore, there is a remarkable cottespondence
between a whole sequence of energy levels in the three nuclei, indicating that
they ate all parts of an I = 1 multipler. The figure shows that they are not
degenerate in mass, but that they differ by several MeV. This is to be expected
because the Coulomb repulsion between the protons does not respect J-spin
symmetry. The energy differences can be accounted for quantitatively in this way.

{b) I-spin multiplets also appear in excited states of nucleons. If one ex-
amines pions and nucleons emerging from a high-energy collision of a pion or
proton with a target proton, one can determine theit momenta and energies.
If a particular nuclean and pion were to be decay products of a single enrity,
then that entity would have to have I = 3/2 or 1/2, since the addition of
I=1/2and I = 1 can only lead to such states.’ Furthermore, if the decaying
state were at rest and of mass M, then the pion and nudeon would have equal
and opposite momenta, and the sum of their energies would equal M¢2. More
genenally, if (E,p) denote the nucleon energy and momentum and {e,q) denote

& It is, of course, assumed that j-spin is conserved in such 2 “decay” of the excited
state. More about this later!
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Fig. 26-3. The level schemes for nuclei with 4 = 18. The I = 1 levels for #0
(I. = —1), ¥F (I, = 0), and ®Ne (I. = 1) show a rematkable correspondence.

The I = 0 levels for ¥F are also skerched in. (Data rzken from F. Ajzenberg-Selove,
Nutlear Physies A190, 1 (1972).)

the pion energy and momentum, then relativity rells us that the more general
relation is

(E+ g — (p+ @)%’ = M (26-9)

Thus by measuring energies 2nd momenta, and studying such combinaticns of
energies and momenta for pion-nucleon pairs, it is possible to look for such
decaying states. Figure 26-4 shows some examples of such mass spectra. One of
the most common states found is an I = 3/2 state with M2 = 1236 MeV.
QOne knows that it is I = 3/2, since the mass peak ocecurs in the Pxt system,
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which has I, = 3/2. It has, of course, been checked that the peak occurs in the
other I states. The multiplet is usually denoted by A(1236). It is a patticle, in the
sense that a detailed study of the angular correlations between the pion and the
nucleon indicate that the spin and pazity are 3/2*, The mass distribution has a
width of about 120 MeV. This is the "“narural line width,” and it indicates that
the lifetime of the T = 3/2 state is

A 0 0.5 X 1074 (26-10)
b ] o~ C -
' AME 120 X 1.6 X 1075 €

No wonder the A cannot be detected as a particle leaving a track in a bubble
chamber!

240
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Fig. 26-4. Bvidence for resonances. {#) Plot of M. ¥~ = (P + 2702 for ¥
pairs from reaction »~ + P — »*x~N. (5) Plot of events (=*P) as a function of
M.*p. Since the initial state involved »*P 2nd only two particle final states were
studied, this is equivalent to a measurement of the =*P cross section. The x+P state
isa pure I = 3/2, I, = 3/2 state.



434 Quantum Physics

200

150

' — P total cross section (mbl

0 | Il |
1100 1300 1500 1700

a* P total mass [Mev)

)

Fig. 26,4 continued

The conservation of i-spin allows us ro make predictions about the

relative decay rates of
/3 P1r°
1
T, Nt
The procedure is completely analogous to our discussion of spin and intensity

rules at the end of Chaprer 22. The initial state of I = 3/2and I, = 1/2 may be
written in terms of I = 1and T = 1/2 wave functions, as follows

A

/ L -N (26-11)
- (20-11)
N3

whete Ys.1, represents the AT, Thus the probability of finding a Pr” state is 2,3
and thar of finding 4 Nr™ state is 1/3. These predictions are borne out by an

12 o
Yiee = ,\/ g P+

analysis of the data.

I-spin conservation has been tested in many reactions, and there is no ques-
tion as to its correctness, subject to small electromagnetic correcrions. The fact
that these corrections are so small, for example, that the neutron-proton mass
difference is so small, made it possible to identify the symmetry. When sym-
mertry breaking is large, this becomes much more difficule.



Fig. 26-5. The reaction K+ + P— K+ 4 g° + A% 4 7"+ s°seenina hydrogen
bubble chamber. The strong reaction conserves strangeness. The picture shows a large
number of intetesting secondary reacrions: the =+ scatrers off a proton and subse-
quendy decays according 10 #~ — u* + 7, with the wt decaying ut —r ot + 5  7;
the =° decays =° — 4, + ¥2, with v — e* 4 ¢~ and v: — et + e the et under-
going Bremsstahlung et — et + v the A° decays according 0 A° — P 4 5~
the K° undergoes the decay B — o+ 4 o (Courtesy of Lawrence Berkeley Labo-

rarcty, University of California.) .
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D. Strangeness

In the late 1940s it appeared 45 if the basic ingredients of a theoty of the
strong interactions, those tesponsihle for the nuclear forces, were established. The
forces acted berween the nucleon doublets, and the “glue” giving rise to these
forces was the pion triplet, as predicted by Yukawa. There remained the in-
superable technical problem of making reliable calculations (because the potential
is strong, perturbation theoty cannot be used), but the expectation was that this
problem would, sooner or later, be solved. It was therefore very exciting when
around 1950 cosmic ray experiments, and later, the first high-energy accelerators,
ind;icated the existence of a new set of particles. The fisc particle so discovered
was the A% it was found chat when a cloud chamber was exposed to cosmic rays,
a cerain number of V-shaped tracks were scen. When the experiment was
repeated in a strong magnetic field, it was found that che tracks bent in opposite
directions; the curvarure of the tracks in the magnetic ficld determined their
momenta, and the range determined their energies. From this, the application of
(26-9) aliowed the determination of the mass of the partidle that decayed into
the P and 7 it was given by M,e? = 1115 MeV. The apex of the V, marking
the point of decay, appeared a certain distance from the point where the produc-
tion interaction occurred. From this the lifetime of the A° could be determined,
and was found to be 2.5 X 1071 sec. From the number of A's seen in a given
number of photographs it was determined that they wete produced with a cross
section of the order of 10~% ¢m?. In addition to the decay mode (see Fig. 26-5).

o
the decay mode
AN+ +°

was later established, Another pair of particles were also found; cthese were the
sigmas, Z%, with Mx* = 1190 MeV, lifetimes st = 0.8 X 107'° sec, 75~ =
1.5 % 1071 sec, and dominant decay modes

P+
Z+/ "
\‘_—\iN+ﬂ+

F—— N+ 7~

At about the same time other tracks appeared that were finally interpreted as
caused by new patticles with Ng = 0. Their decay modes were (see, for example,
Fig. 26-5}.
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In spite of the different final states, these were astributed to single particles
because in each case the masses came out mgc* = 494 MeV and the lifetimes also
clustered around the values rgx = 1.2 X 10~% sec and TRe = 0.8 X 10710 ser,
These K mesons wete also produced with cross sections of the order of 1027 cm?,

The discovery of these particles and their properties caused a crisis; the
datz, taken at face value, were not compatible and if taken seriously implied that
quantum mechanics could not describe the behavior of these particles. To see
this, let us describe the mattix clement for the decay A° — Pr— by the number
G. According to the Golden Rule, the decay rate is given by

ZIGQ &/ dE _ w4yt dp/dE

R (2nf)? A (2wfi)?

With relativistic kinematics { is the center of mass momentum
E = [(4“,62)2 + pﬂc!]l,'Z + [(mrcﬁ)z +P2(‘-2]”2

dp/dE evaluated at E = M, can be calculated, and we get, writing & in
dimensionless form as

R =

(26-12)

Fide

Mz

. - ] E
r_ 8 (ﬂ) (IL) (ﬁ) Ey (26-14)
T\ & ta® ) \meac?) \ Mt
The dimensionless number 8 is the énalog of the fine stucture constant e,

Puzting in numbers we get for the decay rate

R 22 0.68 X 10% sec? (26-15)

Gt=§ (26-13)

the rate
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from which we find that § 22 0,7 X 1075, This number is very much smajler
than the fine structure constant and suggests that the interaction responsible for
the decay is much weaker than the electromagnetic interaction. On the othet
hand, if the A° is produced in a conjectured teaction such &s

=+ PoA+ 7
one can use the A°Pr— coupling to estimate the cross section. Estimates of the
type we used in our discussion of the photoelectric effect suggest that the cross

section must be proportional to 8. The largest "area” involving the masses of
the particles involved thus gives, with the above 8

ﬁ 2
¢~z (m c) = 4.5 X 107 cm® (26-16)

This differs from the experimental value by a factor of 10'? and no minor changes
in the estimates can save us. It thus appears that che A® is produced by a streng
interaction and decays through a weak interaction.

The way out of the dilemma was suggested by Pais, who proposed that
the production process necessatily involves another one of the new particles, so
that reactions involving pairs of the new particles could proceed strongly,
whereas reactions involving only one of them would have to go slowly. Thus
the conjectured reaction

4 PoA+ 2
should not take place, but that
a4+ P— A"+ K°
for example, could. The suggestion of Aveciated Production turned out to be
cotrect, and it was soon determined that the production of a A® was always
accompanied by the preduction of a K. The limitations of the Pais proposal were
seen when still another particle, named the Cascade (&™), was discoveded. Pre-
liminary evidence showed it to decay, with a lifetime of 1.7 X 10719 sec, accotd-
ing to :
At 1
but it 47 not decay according to the mode
E-—= N+
Tts mass was found to be Mze® = 1321 MeV, If the E "helonged with” the A°,
then the first decay mode has a pair of the “new" particles, and should go
rapidly; if the B~ is “normal” then the decay
EE—- N+
should go rapidly, instead of not ac all.
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Fig. 26-6. Hadron spectrum as known in 1953 hefore the discovery of other
particles predicted by stangeness theory. The energies are only approximate, and
the new particles predicted by the strangeness theory are given by the dotred levels.

Order was brought into the jumbled situation by Gell-Mann and by
Nishijima, who independently proposed the extension of the notion of i-spin to
the new particles, and introduced a new quantum number, the strangeness S. The
spectrum of baryons (the name for nucleons and the new particles that ultimately
end up a8 nucleons) and mesons was, by 1953, believed to have the form shown
in Fig. 26-6. It is clear that the 2+ — A° mass difference is too large to put them
into aq #-spin triplet. Thus, in the abseace of equal mass partners, the A° had to
be an [ = 0 state. Since the production ctoss section in the reaction

a +P—= A+ K°

was large enough to be viewed as a strong (rather than electromagnetic) process,
#-spin should be conserved. The left side has 7 = 3/2 or 1/2, and thus the K°
must belong to one of these mulciplets. The absence of any observed K++ or
K™, needed to make up a quartet, showed that the X° would have to be part of
an I = 1/2 doublet, with I, = —1/2 equal to the I; of the Pr— system. The K+
was undoubtedly the I, = +1/2 partner of the K°. The lifetimes of these two
particles could be very different, since the weak interactions need not conserve
i-spin any more than the clectromagnetic ones do. The K- " is undoubtedly the
antiparticle of the K*, and its I, = 1/2 partner is denoted by K°. Note that the K°
cannot be identical with the K° since they have different values of 1. How is it
possible for a neutral System not to go into itself under charge conjugation?
We saw that the antineutron differed from the neutron, because they differed in
the value of batyon number Ny, What i% the quintum number that distinguishes
between the K° and the K°? :
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To answer this question, let us consider the relation between I and the
electrical charge. For the nucleon system we have

1
=L+ =
Q +3
and for pions
Q=L
These two cases, and thar of the antinucleon, can be combined in
Np
eshty

This formula, however, does not work for the new paricles. If we modify the
formula by the introduction of 2 new quantum number 5 called the strangeness,
50 that

Ng s
g¢=L+ 5 + 5 (26-17)

we find that for nucleons and pions § = 0, but for the A® we must have § = —1.
Thus the K®, and its partner, the K*, must have § = 41, and hence the K~ 2nd
the K° must have § = — 1, if we assume that charge conjugation also changes the
sign of 5, as suggested by (26-17). This is che reason that the K° and the K® are
different. How this manifescs itself we will see later.

Continuing with cur examination of the baryon specttum, we see that in
the absence of T+t and/or 2, it seems natural to assign [ = 1 to the Z's.
This however predicss the existence of a 2°, of mass close to 1190 MeV. Why
was the decay

=P+

analogous to the A® decay) never seen? Gell-Mann pointed out that the electro-
3 4 P
magnetic decay

T Ay

did nor involve 2 change in strangeness, in contrast to the former decay mode.
With the postulate that a decay in which strangeness changed by one unit,

|asl =1 (26-18)

should go “weakly” with typical lifetime of the order of 107° sec, while strange-
ness conserving reactions should go sttongly, or electromagneticaily, it was
possible to predict that the 2° — A® + y decay should be very rapid (r ~ 107
sec), leaving no opportunity for the weak decay 1o take place. A careful study of
A" decays showed that they frequently originated in a reaction in which some
momentum and energy was missing. An examination of the missing momentum
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and energy showed that the mass of cthe missing particle was consistent with 0,
and thar the photon and A” were decay products of something with mass 1192
MeV, confirming the existence of the 2% How do these notions, that is, con-
servation of § in the strong and electromagnetic interactions, and |AS| = 1in
the weak ones, work for the =7 The weak decay

B A+

suggests chat the strangeness of the 5~ must be 0 or — 2. The former assignment
is incompatible with the absence of

E— N4 1

and hence we must take § = —2. This implies that the ¥~ has I, = —1/2, and
in the absence of multiply charged E’s we assign to it I = 1/2. This predicts 2
pastoer, the =°, which should have mass around 1320 MeV and decay according
to

EO —s AO + 1rD

{the decays £ — Z + 7 ate not possible because of the masses of the particles
involved). The Z° was looked for and found! The explanation for the absence of

E—- N+ 7

lies in that it is characrerized by [AS] = 2, which is presumably doubly wezk,
characterized pethaps by a 8 of magpitude 10—,

The notion of strangeness conservation in the strong and electromagnetic
interactions, and |AS| = 1 in the weak ones, has passed every test. The classi-
fication of particles hy #-spin and strangeness, ot equivalently by hypercharge Y
defined by

Y=Np+§ (26-19)
is given in the following table.
Baryons Mesons Antibaryons
Y I Nﬂ = [ '3 =10 NE = —1
1 ———
1 5 PN K, K° ==
0 1 T+, X0, T~ T, w0, T 3, 30, =
0 a A0 ? v
1 . -
-1 3 =, = . K, K- N, P
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Subsequent determination of the spins and patities of these particles
showed that all the particles in the first column were 1/2+ and those in the
second column were 0~. If we are looking for patterns, whete is the missing
I =0, Y = 0 pseudoscalar meson?

E. Unitary Symmetry
The search for a familial relation among the baryons and among the

mesons was actively pursued in the late 1950s. Finally in 1961 Gell-Mann, and
independently Ne’eman, discovered a generalizarion of i-spin, bearing the

Y)
11~ x x x x
Y 8 10
1= x x o x X x
o} x %% x -1 X X
Ll ad x x 21— x
I ] ] | i | [ ¢ [ { ¢ |
-1 -1/72 0 172 1 i, -2 1120 12 1 327,
YA
2+ b x * 27
i x o' X x
O x XX %X XX X
-1 x X f4 b4
-2 x x X
I S S T ]

—2-%2 1 —12 0 /2 1 32 2 1,

Fig. 26-7. Some SU(3) representarions. The number of crosses at each site tepre-
seats the multiplicity. Thus the 27 consists of a Y = 2,1 = Ostate, ¥ = 1,1 = 3/2
and 1/2 states, Y = 0, I = 2, 1, O states, and so on,
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technical name of SU(3). Since group theory, the tool most widely used in the
search, is beyond the scope of this book, we can only give 2 very qualirative
idea of how the familial relation looks. In S1X(3), states come in supermultiplets.
Each supermultiplet will consist of a number of states that can be labeled by
i-spin as well as hypercharge. Figure 26-7 shows the several supermultiplets,
the octet, B, the decuplet, 10, 2nd the 27. Figures 26-8 and 26-9 show how the
1/2% baryons and the 0~ mesons fit into the octet patrern. The missing I = 0,
Y = 0 pseudoscalar meson was found in the examination of  n—=° masses in
bubble-chamber pictutes. A study of

(m®} = (Bv + Eo + E) — Hpo. + p_ + pof?

showed a strong peaking at my* = 550 MeV, and 2n analysis of the distribution
of the energies and momenta among the chree particles showed that the decay
pattetn implied the quantum numbers 0~ for that particle. The absence of similar
correlations in wErte—, say, showed that the i-spin had to be zero. Since the
decay was clearly not weak, the strangeness had to be zero. )

If the SU(3) symmetry was indeed a badiy broken (badly, compated to the
only slighely broken /-spin symmetry) symmetry, then it should also be relevant
to the excited states of the nucleon. The I = 3/2, ¥ = 1 A(1236) resonances
needed partners. In 1960 a set of A®r resonances were discovered. The i-spin was
clearly 1 and the hypercharge was 0, and detailed tests showed that the spin and
patity were 3/2F, so that these so-called Z%(1385) were most likely partners of the
A(1236) in a supermultiplet. The simplest possible assignments were the 10 and
the 27. Gell-Mann and others conjectured that the 10 was the apptopriate choice.
The discovery in 1962 of a Zx resonance of mass 1531 MeV, with I = 1/2

¥
1‘ N 4
- < .
\\ N
hY \\
N \
\\ N\
hY
o o E O \{r
\ AY
\ \ hY
AN N N
WO =1 Ng=0 N AN
N N
h N
. S = OZO
| | K [ L1,
-1 -1/2 0 1/2 1

Fig. 26-8. Octer patrern for spin 1,/2+ baryons. The diagonal lines are lines of
constant charge Q. *
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Y
K K
1+ . .
- +
ol . ‘ean’ .
K- K°
L . -
] | | | ! 7
-1 172 0 172 1 ’

Fig. 26-9. Octet pattern for mesons. Included is the T = 0, ¥ = 0 paride
7° discovered in 1961,

{no Z-n~ tesonance, for example) strongly supported this assignment. Whar was
still missing was the Jast member of the decuplet, an I = 0, ¥ = —2 negarively
charged particle. What would it look like? Here the patten of masses of the
other members of the decuplet, A(1236), Z*(1385), and E*(1531) suggested
equal spacing increasing linearly with | Y. If this were to be maintained, the
missing particle, called the &, would have to have mass in the vicinity of Mge?
= 1675 MeV. This would give the £~ a unique signature; its mass is too low
to decay strongly into & + K, and hence it must undergo 2 |AS] = 1 decay to
A°K ot Zr. Its production would also have 2 special signature, since the lowest
possible Y-value for an initial state is ¥’ = 0 for K~ + P collisions. Thus, o
makea Y = —2 {I-, two K’s would have to be produced.

A massive search for such a partide was undertaken, and in 1964 the
first = picture was published (Fig. 26-10). The production process was

K- 4+P—0 + KF+K°
and the decay

L L i

I___.A°+1r°
L
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The fact that in the 7° decay
=yt

both y-fays produced pairs was very fortuitous and makes the picture a texthook
example of what theoreticians dream of, but experimentalists seldom see. The
mass of the I~ was found to lie remarkably close to the predicred value, at
1672 MeV. The spin and parity have not yet been measured, since to date there
exist only 28 @~ piccures, but there is no dewbt in anybody’s mind of what the
outcome will be,

The SU(3) symmetry, just like 7-spin conservation, makes predictions
about decay rates among particles in the same supermultipler. Thus chere are
predictions relating At — P 4 ot Zt* — A° 4+ 5+ and 5% — 5 4+ o
that are in good agteement with experiment, given the fact that the symmetry is
broken. The genetally accepted view is that SU(3) is indeed an undetlying sym-
metry of the strong interactions. The mechanism by which it is broken is not
yet well undezstood, although some patterns (such as the equal spacing rule in

T

Ay

Fig. 26-10. The first . The mass of the @ is below the & + K mass, so that
a strangeness-viclating (weak) decay is involved, What is seen in the bubble-chamber
picture is the sequence @~ — E° + #—; B° — A° + 2°(— 24); A° — P + r*, [From
Barnes e @/, Phys. Rer. Letrers, 12, 204 (%964), couttesy of Brookhaven National
Laboratory and Dr. N. P. Samios.]



446 Quantum Physics

the decuplet) follow from some simple postulates abour the nature of the
symmetty breaking. All of the many resonances that have been found can be ficted
into supermultiplets, although frequently there are still undiscovered pattners.
It ts a remarkable fact that all of the mesonic resonances (and thete are now
17, 17, 2+ and (probably) 0+ octets) and all of the batyonic resonances fit into
octets for mesons, and octets ot decuplets for batyons. This absence of higher
supermultiplets, for example, the 27, cannot be understood on the basis of
SU(3) alone. It does follow from a simple composite model of elemencary
patricles, called the guark mode! first proposed by Gell-Mann and by Zweig.

F. The Quark Model

The question of which particles ate elementary has been a pressing question
in this fundamental field, and with the recognition that the "'elementary” ptoton
and neutron had six partners, it became clear that #f there were some elementary
building blocks, there would most probably be fewer than eight. What might
these building blocks be like? We have spin 1/2 particles as well as spin ©, 1,
3/2, . .. particles. These can be made out of spin 1/2 building blocks, but not
out of spin O building blocks; similarly we need an i-spin doublet, at least, to
make up /-spin 0, 1/2, 1, and 3/2 states. In addition, we need at least one more
particle differing in hypercharge from the doublet, so that various Y states can
be constructed. SU(3) happens to have, as its simplest nontrivial states, a chree-
particle representation and its antiparticle representation. These representations
named “quarks” can be used to build up other SU(3) representations, just like
angular momentum 1/2 can be used to build up angular momentum: states of J
different fraom 1/2. The rules tutn cut to be

33=8+1
3©3= 643
3e3e3=10+8+8+1
so that it is plausible to assume that mesons are made of “quarks” and "anti-
quarks,” and baryons and their excited states are made ourt of three quarks each,

In this way the absence of higher representations can be understood. In order
to maintain the formula

—I+1
Q=L+

the following quantum numbets ate assigned to the quarks, which are labeled
with lowetcase letters related to their 7-spin content, p, #, and A,
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Particle Ng T I Y Q
? 3 H i % 3
n H 3 = 3 ~3
A i 0 0 -2 -1
X -3 0 0 3 3
n -3 3 } -} H
’ 3 3 - — -

To construct the composite wave functions for a quark-antiquark system, we
start with the highest Y and highest I, states; lowering I, can be done by succes-
sively converting p — n or n — p. To get the states of one lower unit of Y,
convert 2 p toa A oran n to a h. For example,

K+ = (p)
Hence
K® = (nh)
To get the x* state, convert X — # in the K*. This yields
= ()
and then, successively®
\/2 (—pp + m)
~ = (np)
The K~ and K® are just the antiparticles of the K doublet, so that
K5 = ()
—= ()
There remains the I = 0, ¥ = 0, »° state. It can be cbuined by converting
£~ »1n the K*. Whae one gets is part 7° and part #°, but since we already know
what part #° is, the %° can be found by insisting that it be orthogonal to the .

The choice tutns out to be
1 - — -
=" (X — pp —
e V/E ( A b ””)

¢ The minus sign in the =° is a technical subtlety. In effect, the andspinos 1o (p, #) is

» —p.

-
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There remains a final possibility:
1 - - -
XD=—$(PP+ﬂﬂ+?\)~]

otthogonal to both #° and %°. This is, in fact, the 1 in the decomposition 3 X 3=
8 4+ 1, and it does correspond to a particle that has been identified, the 7'(938),
which also has spin and parity 0~

The bound states with L = 0, that is, the 1§, states, ate the pscudoscalar
mesons (tecall that the parity of an antiparricle has an additional minus sign).
One can imagine L = 1 states, for example, 'P; (i.e., 17) bound states, and also
Py 1 ¢ states (21, 11, 01), and so on. Many of these have been found. The quark
model, being mote specific than SU(3) yields more predictions, comelating
decays of particles that have different spins.

The three-quark wave functions can be wotked out just like the quark-
antiquark wave functions. The highest Y, I, state is the {gpp) state, which can be
identified with the A*+. Its partnets are again obtained by successive conversion
of p—

At = (ppp)
NS % (pem + pup + npp)
A — % (prn + npn + nnp)

A= = (nnn)

The Z** is obtained from (ppp) by changing p to X. Thus

T+

1
3 (PN + PN+ Mpp)

L

T Ve (prn + nph + pan L+ udp + Npm 4 np)

TE = % {nrx + win + hnn)

Successively
1
EF o= e (AR MM A AN
3 (M - MpN - ANp)
= \]/3_, (mAA + Mh + W)
and

= A\
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'The four multiplets differ in the number of N quarks. If it is assumed that the
symmetry breaking completely resides in the fact that the M quark is some 150
MeV more massive than the (#,1n) doubler ,the mass patrern of the decaplet can
be understood. When this argument is applied to the meson octet, it does not
work as well with a 150 MeV mass difference, However, the telations

2 mp + binding

My

mx = my -+ »x + binding
2 1 L.
m, = g (2m) + g {(2mp) + binding

{the factor 2/3 coming from the probability of finding the »° in the M\ state)
lead o

1
mEg = :i (_’;mw + ) (26-20)

which is known as the Gell-Mann Okubo mass formula. It works to abouc a
10 percent accuracy, but is very good if the relation is written for the squares of
the masses. Incidentally, the same formula will work for other octets, and for
the baryons it will have the form

1 1
2 (mp + mz) = P (3ma + m3) {26-21)

[t is quite accurate, and is sometimes used to estimate where partnets of incom-
plete octers might be located.

The quark model leads to many other predictions. For example, if it is
assumed that at high energies all quarks and antiquarks interact identically,
leading to equal cross sections, then it follows that in PP collisions there are
nine possible interactions and in =P collisions thete are six, so that

a(PP)_
al(mP)

_3 (26-22)
2

Surprisingly, this simpleminded counting works very well, both in this instance
and in*many more. It is an urgent and as yer unsolved problem in parricle
physics to understand why quarks, which must be very massive if they exisc at
all, since otherwise they would have beeen seen, act in such a simple additive
mannet. Ocher questions remain. Why do three quatks bind, but not two?
More detailed considerations show that quarks, even though assumed to have
spin 1/2, act as if they did not obey ‘Fermi—Dirac statistics. Why is this so?
We do not know.
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G. Parity Nonconservation

In addition to the strong interactions and the efectromagnetic interactions,
chere exist, in nature weak interactions. They were first discovered in beta decay,
that is the reaction

N—oP+e 4+
and related reactions such as positron decay

PN+t 4o
and the capture reaction

e+ P-a-N+v»

with the last two occurring only in nudei. What was observed was a nuclear
decay of the form

42) = (A4Z+ 1)+ e

The elecrrons did not come out with a fixed energy, as they would have to if this
was a two-body decay, although the maximum electron energy matched that
available for a two-body decay. Faced with the choice of giving up energy con-
servation or proposing a new particle, Pauli in 1931 postulated thar there exist a
neutral particle emitted in the reaction with the electron. The propetties of
the new particle, named the newtrino, were the following:

1. Charge conservation required that it be electrically neutral.

2, The equality of the maximum clectron energy to the available energy
required that the neutrino mass be very tiny; it is now believed to be zero.

3. Studies of the spins of the initial and final auclei required the neutrino
to be a fermion. It is now known to have spin 1/2.

4. The neutrino was not found when it was first postulated. The reason is
that it inreracts very weakly with marter. The cross section for neutrino absorp-
tion could be calculared with a deuiled theory proposed by Fermi in 1932, and
it was shown to be 107* cm? at low enetgies. Thus, in spite of its esotetic natute,
the existence of the neutrino was accepted by most physicists, and it was finally
identified in 1954. Nowadays neutrinos ceming from the decay of high energy
pions are used to study high-energy neutrino-nucleus collisions,

The Fermi theory of beta decay explzined a class of weak decays, including
those involving a new particle, the muon (p), which is for all practical purposes
an electron of mass m,e® = 105 MeV, which was discovered in the 1940s. It could
also explain in principle, if not in detail, decays such as

()
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since these could cccur through the steps

P4+ N
P —»N+("+)+u
“_+

with the N-N annihilating. With the discovety of the strange particles, weak
interactions not involving electrons, muons, and neutrinos appeared on the
scene, a5 in

AN—>P+ o
and
Kt gt 4 £°

KX — ot + ot g

The latter decays artracted much attention. As the experimental dara began to
point o the fact that the K meson had spin 0, a paradox atose. The decay

K—2rx

into two spinless particles implied that the orbital angular momentum also had
to vanish. Since both pions were of negative parity, the implication was that the
K'had positive parity. On rhe other hand, a detailed study of the energy distribu-
tions in the decay

K— 37

suggested very strongly that all three pions were in § states relative to each other,
as might have been guessed from the small amount of kinetic energy available
to the three pions in the decay. This meant that the parity had to be (—1)%,
that is, odd, since thete were three negative parity particles in the final state.
These conclusions were inconsistent with the well-established principle of the
invariance of the laws of physics under space reflection.

In 1956, Lee and Yang, in a very important paper, rised the question,
How de 1we really know that parity is conserved in the weak interactions? There was no
doubt about the validity of parity conservation in the electromagnetic inter-
actions, Pariry consetvation implies some selection rules, and these are satisfied
to a high degree of accuracy. This degree of accuracy is not high enough, how-
ever, to say anything about the conservation of parity at the weak interaction
level. In the direct study of weak interactions, there are also some selection
rules; for example, the K should not be able to decay into 2n's and 3x’s! In
general, what is needed to check parity nonconsetvation is to examine a physical
observable that allows us to distingnish between our world and a “world re-
flected in a mitror.” The question imme;ijately arises, Wounld not a state of an
electron, moving wich momentum p, be reflected inro a srate with momentum
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—p, and would not this distinguish becween the two worlds? The answer is thac
this would not, provided that both stares are equally probable, so chat if we see
an electron with momentum —p we are not forced to the conclusion rhat we
live in the ""mirror’’ world. The existence of elliptical orbits in planetary physics
is not evidence against the invariance of the laws of gravitation under rotations,
uniess some elliptical orbits are preferred to others. Thus to distinguish berween
our world and the “mirror” world more subtlety is needed.

Suppose we had a one-dimensional potential that violated parity con-
setvation, thac is, $uppose it was of the form

V(X) = Veven(x) + Vudd(x) (26‘23)

and suppose that Voge(x) is very much smaller than Vege(x). If #.(x) ate the
eigenvalues of

2
Hy = P_ + V;ven(x) (26'24)
2m
then the lowest order energy change due to the presence of Foga(x) is

a7, = [ o) Vi) e (2625)

MNow the Hamiltonian Hj, is even in x, and hence, as discussed in Chapter 4, the
eigenfunctions #,(x) can be chosen as eigenstates of the parity operator, that is,
they are either even or odd. Consequently, AE, vanishes, that is, a measurement
of the energy cannot be used to distinguish between a world and 2 “mirzor”
world. The second-otder enetgy shift will not vanish, but since it is quadratic
in Poaa(x), its conttibution will be the same in the two wotlds. The argument
can be generalized.

We can similarly argue that a determination of a decay rate cannot dis-
tinguish between the two wotlds. If parity is not conserved, it is possible for
the matrix element for some transition to have the form

M = Meven + Moga (26-26)

By the Golden Rule, the decay rate has the form

-

: T o) (26.27)

Meven + Modd

In the “mirror” world this takes the form

e (26.28)

2w
R = 7{ Z\Meven — Moaa




Elementary Particles 453

On che face of it, it looks as if the decay tates ate different. We must, however,
be careful in describing the difference between the two terms. Fitst of all, M.,
must be a scalar; it cannot be a vector, since this would single out a direction
in space and ultimztely imply lack of angular momentum conservation. Thus if
there are momenta p; in the process, then M,,., can be a function of various
products pi-p;. If there are spin vectors present, then it can also depend on
8:-8; and on (p:-S;)?, but not on p;-S;, since the last is 2 pseudoscalar quan-
tity; whereas momentum changes sign under an invetsion, the angular momen-
tum does not (¢.g., r X p does not, and hence the spins cannot). On the other
hand, M43 must be linear in a pseudoscalar quantity. Thus if there are mote than
three independent momenta in the final state of a decay, a possible pseudoscalar
is p'pz X ps. In two or thiee body decays, the pseudoscalars must be of the
form S-p where § is one of the spin vectors and p is one of the momenta.
Hence, if for definiteness we assume that

M=A44+ BS.p (26-29)
then
E'Meven + ]Hoclx‘lg2 = El‘q‘z + Z{BZ (S . p)z
+ 2 {AB* + A*B)S - p (26-30)

In a decay rate the spin states are usually summed over, that is, no measurements
involving the correlation of the spin and momentum are made. In that case the
last term vanishes, and the rates are the same for the world and the “mitror”
world. It is only if the presence of a correlation such as §-p is measured, that is,
if & piendoscalar guansity is measured, that parity nonconservation can be detected,

Lee and Yang then suggested several experiments involving the weak
interactions in which such correlations could be measured. Within a few months
of the appearance of their paper a number of experiments showed thar parity was
indeed vivlated in the weak interactions. What does this do to rthe cherished notion
that the laws of narure should be invatiant under inversion, that, so to speak, it
should not be possible to instruct an extragalactic being on how to make a right-
handed screw? It now appears that the weak interactions not only vialate parity
conservation, but are also not invatiant under charge conjugation, They are
invariant under combined charge conjugation and inversion, CP. Thus, from a routine
atempt to determine the parity of the K meson from its decay grew (a) the
experimental vetification that patity is not conserved in the weak interactions,
(b) subsequene clarificarion of many aspects of the weak intetactions, not
possible before parity nonconservation had been abserved, and (c) the discovery
that nature shows more imagination than physicists, as in supplanting C and P

by CP invariance. .
-
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H. The K° — K° System

As our final topic we discuss the implications of the consequences of the
strangeness theory that the K® is not identical to its antiparticle, the K®, since
these implications make use of simple quantum cheory and are quite startling.

" As noted before, what distinguishes the K™ from the K” is the strangeness, and
in 2 production process it is clear which of these is produced. Thus in the
reaction

—+ P A+K°
we know that a K° is ptoduced; in the reaction
K- +PoN+K
we also know that it is the K° that is produced. Given that the paricles are
psendoscalar, we find that
cP|K%) = —|K°)
CPIK’) = —|K°)

Thus both K° and K° may be viewed as linear superpositions of CP eigenstates;
if we write

! B - (-

it follows that
CPIK) = |Ki) CP|K;) = —|Ka) (26-32)

Since CP is consetved in the weak interactions, and the #tx— system with zero
angular momentum is even under CP, in the decays
K — gtro—

K° — wta—

it is really only K that is decaying. Both K and K; can deauy into some of the
other modes, for example,

wtrn®
ntet v

In general, both K° and K® o K; and K; are equivalent basis states in a two-state
space. The strong interaction production process acts as a polarizer, ptoducing a
particular particle K°, say, or equivalently, a particular coherent mixture of
K; and K, {cohcrent, in the sense that the phase relationship is fixed). After 10 1¢
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sec strangeness no longer means anything. The weak decay into x+#— acts as an
analyzer, and it picks cut Ki. Gell-Mann and Pais in 1935 pointed out thar the
remaining K; component persists, and, since it cannot decay into the 2r channel
available to the Kj, ptesumably has a longer lifetime and should be looked for,
with one of the alternative decay modes. The K: was looked for and found. It
had z lifetime of about 5 X 107® sec compated with 0.8 X 10~ sec for the K.
Other interesting effects emerge. Pais and Piccioni noted that if one starts with
a K° beam, then after 1071% sec one is left with 1/4/2 Kp, that is, a2 beam of the
form 3(K° + K°). If, before the K; decay can take place, matter is interposed,
then, because of the different strong interactions of the K° and the K° com-
ponents, for example,

K+PoSK 4P K+ PE+pP
K°+P—K*+ N K+Pozt+4°
K+ N—-K4+N — 30 4 gt

the parricular phase relation is destroyed, and one no longer has a pure K; beam.
Hence, 27 pairs will again be seen, since the mixtute now will involve some K.
Thus under the idealized conditions that all the K° are absothed, and the K°
metely scatteted in the forward direction, what emerges from the interposed slab
of marerial is }K°. The phenomenon, known as regeneration, has been abserved
and studied in derail. (See Fig. 26-11.) The verification of the prediction of
Gell-Mann and Pais adds strong support to our belief in the validity of quantum
mechanics 25 the proper framewark for the description of subatomic phenomena.

This is 2 good note on which to end. The reader, having mastered the
macerial that we have presented, is ready to go deeper into the study of quantum
mechanics, in which more sophisticated mathematical tools ate necessary. Such
a study will bring him or her to the frontiers of knowledge, be it in the investiga-
tion of the struceure of elementary paiticles at energies of billions of volts, the
properties of marter at 1072 K°, ot the nature of nuclear marter on the surface and
inside a neutron star. Whercver he or she chooses to go, there will be excitement
and surprises.

0 P .
.».{__A abserved Regenerator A _
L
- . % -l
-~ é _____

1 * 1 1 — L - !
Proten \{—; ", + K,) : - “r.—; K, =5(K, + K 7 Ky m K, + Ky)

target
-
Fig. 26-11. S$chematic drawing of regeneraticn experiment.
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Problems

1. A 10 MeV positron collides with a hydrogen atom ar test. Write down
the energy and momentum conservation relations. Taking into account the fact
that the proton mass is M2 = 940 MeV, what will be the energy of the emitted
photon from the reaction ¢t + H— P 4 «?

2. Whar is the threshold energy for the production of an antiproton in
the reaction
P+P—oP+P+P+P
One of the initial protons is at rest.

3. Hed (PPN) and H? (PNN) ate likely candidates for an /-spin doublet
(theze is no trineutron nucleus). Consider the reactions

7~ + He?
P+D <
1|'+ + H?3
Show that /spin conservation predicts that

a{He?)
o(H?) a

Hinz. Write out the initial state (why is it an /-spin eigenstate?} in terms of the
x's (analog of Y}, and He3, H? (analog of x4, x— in spin 1/2 wave functions),
as was done in (26-11).
4, Which of the following reactions can proceed strongly, which weakly,
and which not at all, and why?
P+ PP+ A+ K
P+ PP+ A+ 7t
T+ Pos K
a4+ P—A°+ Kt
P+ P—K++EK+
P+P—A+ A+ N
Kf— gt 4 et 4 ¢
K°—at 4+ &
5. Consider a beam of pions impinging on a proton target. What is the
“threshold for K° production? What is the threshold for K~ production?
(Hinz. Start in the center of mass frame.}
6. Calculate the parameter § introduced in Section D of this chapter that

characterizes the decays (2} 2+ — N + xt and (b) K* — »+ + #°. The rates are
0.6 X 10! sec® and 1.7 X 107 sec™! respectively.
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7. A particle is seen to decay weakly (lifetime of the order of 1071 sec)
a5 follows:

X—at f 4t

What can you say about the particle on the basis of this information? Consider
(2) limits on its mass, (b) /-spin, and (c) spin, parity. Into which SU(3) super-
multiplet, of the ones discussed in this chapter, could this particle fit? What
would be the significance of the observation of such 2 parricle?
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Relativistic Kinematics

In this section we summarize some formulas that are useful in simplifying
the effects of relativistic transformations from one reference frame to another.
A typical application atises in scattering: theory deals with the center of mass
frame, experiment with the laboratory frame, and the results of the two must be
compared. The simplifying rechnique to be used is based on two results from
the theory of special relativity:

{a) The scalar product of two four-vectors, A, = (Ay, A) and B, =
(Bo, B), defined by

A-B = A,B” = (AUBD - A'B) (ST 1—1)

is invariant under Lorentz trapsformations.
(b} The energy and momentum of a particle transform as a four vector

B
= (—C, p) (ST 1-2)
whose square of “length" is given in terms of the rest mass of the particle
E2
2= pbe = i p* = m%? {5T 1-3)

In general, a collision between two particles, leading to two particles in the
final state, for example,

A(pa) + B(pa) — Clpe) + 4pn)

will be characterized by just two numbers. The reason is that there are 4 X 4 = 16
different components of fonr momenta; chese are restricted by four mass condi-
tions (ST 1-3), and four energy and momentum conservation conditions;
furthermare invariance under translation and under rotation implies that six
more coodinates, the center of mass momentum, the orientation of the scatter-
ing plane in space and the choice of axes in that plane are irrelevant.

For our two invatiants, we take

5= (pa+ pe)® = (pe + po)? (ST 1-4)
461
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with the second term following from four-momentum conservation, and

2= (pc— pa)* = (pp — pu)® (ST 1-5)
Another possible choice is
w= (pp — pa)t = (pc — pa)* {ST 1-6)

These three are not independent, since the reader can easily convince himself that
Pax + pBu = Peu + pog, the energy-momentum consetvation law implies

s+t w0 = malt + med 4 mel? + mo'ct {81 1-7)
The invariants have the following significance.
s: Consider the center of mass frame, in which
pit+pr=20 (ST 1-8)
There
s = (oa+ pos)® — (P + Pa)

(5. 5y

[ &

1 " *
) (Eq + Eg)? (ST 1-9)

that is, it is, within the factor of ¢?, the squate of the total center of mass epergy.
We follow custom in labeling the center of mass coordinates with an asterisk.
1: The significance of 7 is somewhat clearer in the special (but vety com-
mon) case that particles A and C, and B and D are the same, as, for example, in
the reactions
P>+ P
and
THeyte
In that case, in the center of mass frame,
¥ * *® *
PB = —P4 Pp = —Pc¢
Ej -+ Ep = Ec + Ep (ST 1-10)
and
mq = Mo mp = mp (ST 1-11)
imply that
(p:;g &2+ m?,{ POTLNE (p;z 2+ m%.c‘)”z
= (o2 ¢ P (pE2 o e
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that is,
Bq4=Ec Ep=TIp (ST 1-12)
Then

I

Ex  Ec\? . .
= (pa — po)? (—A‘—i) — (pa — pe)?

e '
= —(py — po)? (ST 1-13)

that is, it 15 minus the squate of the momentum transfer in the cencer of mass
frame.
Note that 2 is related to the center of mass scattering angle. The above yields

t= —p® = pc + 2py  po

= —p4 ~ p& + 2|p4! |pe| cos 6* (ST 1-14)
The laboratory frame is charactetized by pp” =
Poe = (mac, B) (ST 1-15)
Thus .
5= (pat pu) = pa* + pot + 204 5
= ma%? + mp%? + 2mpE" (ST 1-16)
and
¢ = (pp — pa)’
= mp¥® + mp*® — 2mpEpT
= Q4= pol’

= ma’ + mc’e* — 2B4LEch/ 2 + 2pat-pet
= ma’® + mc — 2B,LBcE/ 2 4 2| pa®| | pe| cos = (ST 1-17)
This, with the help of
Es* + mpe* = Eel + Ept (ST 1-18)

and the invariance of s and 1, that is, the fact that sand # have the same values in the
center of mass and the labotatory frames (or any other frames) allows us to
compute the relation berween center of mass scatteting angle and laborarory
scattering angle, and between the energies in the two frames.

The transformation properties of differential cross sections, dr/d (cos 8)
are obtained from the statement, which can be established when one formulates
scattering theory relativistically, that o is an invariant. Hence

do

& (ST 1-19)
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is invariant and, to exhibit the cross section in a form in which the transforma-
tions from one frame to another ate most easily done, it is best to write it as a
fanction s and #. We will not do this hete. As a final peripheral comment we
note that the expression for the

&'p
(2af)?

is not relativistically invatiant. However the manifest invariance of

[..[d‘pa(p‘*’— )

= f &p f dpob(pe® — p* — m*?)

ol
1 ¢ &p
- [d"p 24/ p + % T2 [(p“t"' + mict)e
(8T 1-20)
shows that
@p 1
B (2nf); (ST 1-21)

is invariant. Matrix clements in relativistic theoties always have the particles
normalized not according to

but according to

1 1
— ==
VvV VE

50 that the necessary factots emerge from the square of the matrix element.

iper/h
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The Equivalence Principle

According to the relativity principle, the laws of physics must be such as
to make it impossible to distinguish between two inertial frames that differ frem
each other cnly in thar one is moving with a constant velocity relative ta the
other. Common experience suggests another equivalence; it is not possible
o distinguish by simple mechanical observations whether a system is in a
uniform gravitational field or whether it is in a gravity-free region, but subject co
a constant acceleration of the appropriate magnitude and direction, In real grav-
itational fields, the equivalence only helds on a scale small enough so that the
difference in gravitational potentials between two points & and ry is linear
in | 1, — rz|. Einstein proposed that this equivalence be a fundamental principle
of nature, and that &/ laws of physics be in accord with ir,

The acceptance of it has some far-reaching consequences, First of 2ll we
note that the uniform acceleration a must be produced by a fotce F, and these
are related by

F = ma (ST z-1)

The equivalent gravitational field may be produced by a mass M a distance R
away, provided the gravitational force

mM

F=¢ = R (ST 2-2)
is made equal to ma by an appropriate choice of M and (latge) R. There is, how-
ever, no & priori teason why the inertiai mass of the objece which appears in the
telation (ST 2-1) should equal the gravitational mass that enters into the gravi-
tational potential energy

Mm
VE) = -G ‘T (ST 2-3)

The gravitational mass enters into the above as a “coupling constant’” just as the
charges do inte the Coulomb potential, and one could imagine, for example, that
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the "masses” that enter into (ST2-3) are different from the inertizl masses that
appear in (ST2-1). This is not possible if the equivalence principle really holds.
Suppose, for example, that a rather extreme situation were to hold: electrons are
not subject to gravitational forces. In that case the inertfal mass of an atom is
(approximarely) M(A,Z) = AM + Zm whete M and = are the nucleon and
electron masses, tespectively. On the other hand, the gravitational mass that
enters into (8T2-3) is just AM, to the same approximation. Thus, inside a
satellite a mass of lead might be floating, whereas a mass of material for which the
Z/A ratio is different would fall. This suggests an experimental test of the
equivalence principle; according to the principle, all marterials should behave in
the same way under a combination of gravitational and centrifugal forces. This
test, showing the equivalence between inertial and gravitatiopal mass, has been
cartied out, and established to an accuracy of one part in 10" in recent experi-
ments by Roll, Krotkov, and Dicke,! but was known to be ttue to an accuracy
of a few parts in 10° from early experiments of Eotvds (1890, 1922). The prin-
ciple of the experiment involves suspending two equal masses of different
materizl (gold and aluminum) from a torsion balance. Any difference in the
acceleration of the rwo masses toward the sun as the earth moves in its orbit
would result in a deflection, which in fact, was not observed.

Another consequence was mentioned in Chapter 2 and in Chapter 22
{Section B). A photon of energy E has gravitatiopal mass E/c?: to establish this,
we consider an atom in an excited state, with mass M* at a height x above some
reference level. The work done to lift it to that height is M*gx. When the atom
decays to the ground state, of mass M, a phoron of energy M** — Mc? is
emitted.

Suppose that the photon is absorbed at the reference level. The energy
absorbed is (E 4 E,) where E, is the gravitational energy that it acquired in the
fall. If the atom in the ground state also drops to the reference level, the total
work done by the gravitational field is Mgx on the atom. If the absorbed energy
is nsed to excite the atom back to the state of mass M*, we are back to the osiginal
situation, with M* at the reference level, provided

M*gx = E; + Mgx (ST 2-4)
Thus

E -
Eg = (M* — M) gx = 2 §F (ST 2-5)

Considet now a photon at a height x. Let its frequency there be », so chac
 E=m (ST 2-6)

! For a detailed description of the experiments, see R. H. Dicke, The Theoretical
Sigunificance of Experimental Relativity, Gordon and Breach, Science Publishers, New York
(1964).
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The photon energy at the reference level is
gx
E+ E, = E\1+ =
¢
= hy (1 + %) (ST 2-7)

This must equal k', whese »' is the frequency of the photon measured at the
reference level, Thus the relation

V= (1 + %) (5T 2-8)

implies that the frequency of the photon is raised and

Av 53

== (5T 2-9)
v ¢
The period, which is reciprocal to », is thus changed according to
AT g%
= = = ST 2-10
T : ( )

This prediction was confirmed in a terrestrial experiment done with the Moss-
bauer effect (Chapter 22, section B). The shift is more dramatic if we compare
the frequency of an atomic emission line on the surface of a massive star with
the frequency of the line on earth. There
Ay GM .
— = — ST 2-11
v Re? ( )
For the sun, whose mass is 1.99 X 10% gm, and whose radius is 6.96 X 10" cm,
the shift is small, Av/v = 2,12 X 107" This has been measured for the sodium
line in sunlight (Dicke, loc. cit.) and observarion agrees with theoty to 5%,
The shift is called the gravitational red shift since the earth is “up” relative to the
sun. i
Another prediction follows by analogy with electrostatics. Just like 2
charge is defiected by a Coulomb field, with a deflection angle given by
] Ze

tan T e B (ST 2-12)

where Ze and ¢ are the two charges, = the mass of the moving charge, v is irs
asymptotic velocity, and & is the impact parameter, so will the photon be de-
flected by a large mass, for example, the sun. Since the force law is the same, we
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just make the substitution Ze! — GMm and v — ¢ The impact parameter is
roughly the radius of the sun, so that for two stars,
GM
B0 ™~ F (ST 2-13)

The numerical value of this is 0.83", The actual measured value of this, observed
by locking at stars near the tim of the sun during a total eclipse, is just twice
this value. The explanation of this discrepancy lies in the Binstein Theory of
Gravitation, which is beyond the scope of this book,

It should be steessed that Planck’s constant does not enter (ST 2-8). The
result is a purely classical one, and can be derived without the use of the con-
nection E = kv, which is a convenience, but not necessary 2

2 The original paper of Einstein is very readable, and is reptinted in translation in
The Princivle of Relarivity, a collection of original papers, published by Dover Publications, Inc.
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The Wentzel-Kramers-Brillouin

Approximation

This approximation method is particulatly useful when one is dealing with
slowly varying potentials. Exactly what this means will become clear later. One
wants to solve the equation

aap(x) 2m
“a t o E- VWl =0 (ST 3-1)

and to do so, it is useful to write
$(x) = Rx) 7 (ST 3-2)
Then

Y SR 2 dR A5 P51 2SN st
ﬁ{dxﬁ?z;W"w—‘ﬁ?R(z)} T6T33)

so that the differential equation splits into two, by taking the real and imaginary
parc of (ST 3-1) after (ST 3-3) has been substicuted. The imaginary pare gives

R——4+2——=0 (8T 3-4)
that is,

il ﬁ-ﬁ-Z] R) =

e\ 8 gy TEBR) =0

whose solution is

&

C
a3 (ST 3-5)

26O
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The real part reads

&R 1 R(ﬁ)ﬂ+zm[ﬂ— L) P

PR T D = 0
which, when (ST 3-5) is substituted, becomes
d 2m[E —
R_CG L wE=VEl o s

dxi ﬁ'.! R& ﬁz

At this point we make the apptoximation that

1 &R C 1 1 {45
Sl el e O (ool T 3-
T e < ﬁz( ) (ST 3-7)

so that the equation becomes

% = 2m[E — V{(x)] (ST 3-8}
Thus
C Ay
' = e = vV 2mE — V{x)] (ST 3-9)
and hence

S(x} = f: 4V 2mlE — Vi) (ST 3-10)

The condition for the validity can be translated into a statement about the
variation of F(x). It will be satisfied if }7(x) vaties stowly in a wavelength, which
varies from point to point, but which for slowly varying V() is defined by

#

)
M) = 2% T {amlE = PRI

(ST 3-11)

At the points where
E— V(x) =0 {ST 3-12)

special treatment is requited, because in the approximate Eq. ST 3-8 R(x) appears
to be singular. This cannot be, and this means that the approximation (ST 3-7)
must be poor there. The special points are called turming poinss because it is there
that a classical particle would turn arcund,; it can only move where E — Vix) = 0.
The way of handling solutions aear turning points is a little roo technical to be
presented here. The basic idea is that we have & solution to the left of the turning
point [where E > Vi(x), say], of the form

${(x) = R ¢ J3 % NZmANE-VD)] (8T 3-13)
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and a solution to the right of the turning poine [where E < #(x}], and what we
need is a formula that intetpolates between them. In the vicinity of the turning
point one can approximate +/(2m/R% [E — V(x)] by a straight line over a small
interval, and solve the Schridinger equation exacdy. Since it is a second-order
equation, there are rwo adjustable constants, one of which is fixed by fitting the
solution to (ST 3-13) and the other by fitcting it ©o

Y(x) = Re—Ji 4 YEmmvoi-E (ST 3-14)
the solution to the right of the tutning point.! The above solution decreases in
amplitude as x inctreases, The total attenuation at the next turping point, when
E > V{(x) again, is

Ylar)
ylor)

which is just the square root of the transmission probability that we found in
Chapter 5.

exp I — [i“ & wf(zm/mnm)—m} (ST 3-1%)
I

' For more derzils, see almost any of the more advanced books on quantum me-
charics, for example, J. L. Powell and B. Crasemann, Quantam Mechanics, Addison-Wesley
Publishing Co. {1961); L. I. Schiff, Quantum Mechanics, McGraw-Hill Book Co., (1968),
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Lifetimes, Line Widths, and

Resonances

In this section we will discuss a slightly improved trearment of eransition
rates, which will indicate how the exponential decay behavior comes about.! The
limited mathematical sophistication assumed of the reader will make the treat-
ment somewhat less elegant than is possible.

To simplify the problem as much as pessible, we consider an atom with
just two levels, the ground state, with enetgy 0, and a single excited state, with
energy E. The two states are coupled to the electromagnetic field, which we will
take to be scalar, 50 that no polarization vectors appear. We will only consider
the subser of eigenstates of Hy consisting of the excited state ¢y, for which

Hogy = Edy (5T 4.1)
and of the ground state 4+ one photon, ¢(k), for which
Hyp(k) = e(k) ¢(k) (ST 4-2)

and limit ourselves to these in an expansion of an arbitrary function. This is
certainly justified when the coupling berween the two states, ¢, and ¢(k) through
the potential I, is small, as in eleciromagnetic coupling, since then the influence
of ewa-, three-, . . . photon states is negligible. Note that

{lopk)) =0 (ST 4.3)

even when the k is such that the energies e(k) and F are the same. The states are
orthogonal because one has a photon in it and the other does not, and because
for one of them the atom is in an excited state, and for the other if is not,

The solution of the equation

d‘“’) — (Ho+ V) 4l (ST 44)

! This was first derived by Weisskopf and Wigner (1930).
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may be written in terms of the complete set
V(i) = als) ¢y e TR + f Fhb(k,8) d(k) o (ST 4-5)
When this is inserted into (ST 4-4),

da  _j .
1ﬁ? e—:EJ/I. ¢1 + Es e—rE.r/n ¢1

+ fﬁfﬁk ﬁ(;;_.f) e—a'e(li)t/'ﬁ ¢(k) + fdakeﬂi) b(k,t) e—ie(k)t,/ﬁ ¢(k)
= Ed(t) e—.r'E!fﬂ o +fdaké(k) b(k,ﬁ) e—ie(k)t/h ¢(k)
+ a(f) e Vi + f ARk 1) e O (k)

tesults. If we ake the scalar product with ¢, we get

;ﬁ:‘;i- = a1 Vo) + ] d%kb(kr) e O (g, |V o (k))

Since ¥, acting on a state, is supposed to change the photon number by one,
{¢:]Vi$:) = 0. With the notation

(k) — E = Fua(k)
{6 V]e@)) = MK (ST 4-6)
the equation becomes
Mr) f bk ) e M(K) (ST 47)

If we take the scalar product with $(q), and again use photon counting to set

{${q) | V|é{E)) = 0, we get, after a lircle manipulation, wsing 2 notmalization -

that
#aied) = ik — q) (ST 48)
the equation
w280 _ ) o arriq) (ST 4:9)

Since b(k,0) = 0 if the excited state is occupied at # = 0, 2 solution of this equa-
tion is

bk,i) = % MHK) f P L (ST 4.10)
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We now insert this into (ST 4-7) to get

dat) _

1 —aimy {F i)
% o fd*k{M(k)Pe * . ' alt’) ¢ (ST 4-11}

Next muitiply both sides of the equation by ™™ and integrate over rime from
0 to e, On the left hand side

f“’ di ‘—nf"‘?(:) = fﬂ“’ d!?dt[e_“a(t)] + )\[: die™ a(p)

a
= h[ dte™aly — 1 (ST 4-12)
Q
whete we have used
a0} =1 {ST 4-13)
On the right side we have
1 « . t .
- % [ | Mk)|* f d oM gk f dais’) #WF
0 v
Now, as can be seen from Figure ST 4-1, the integral

o 3 i A .
[ dt ¢ "=k f dr'als’) o
° 9

over the first octant in the r~#' plane, can also be written as

: f " Waly) S0 f " eI
G [

t'=1

" /.

/1

= I

Fig. §T4-1. The integration over the first octant can be done either by holding
# hixed, integrating along the vertical sirip, and then summing the strips from ¢ = 0
W ¢ = o, ¢r by first teking the integral along the horizonta! strip from ¢ = # to
# = = and then summing over all the horizontal swips from 7 = 0o ¥ = =,
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and hete, the last integral can be done, so that

« " @ ik e-[l+i¢=(k)]l'
dre” —1 = Pk ? ! a)e N
. e M a(f) — 1 ﬁ,? | M{k)) jﬂ dr' alt')e k)
1 l M(k) | z ¢ —As
- _ AR ST 414
h2 AT fw (k) df (! ) ‘ ( )

We can solve for j dra(t) e ™ to get
L1}

,/ , Bl = 1 | M2 (ST 4-15)

Mo R T A

‘The reader familiar with the theory of Laplace transformations will recognize the
above as such. The inversion of the Laplace tiansformation of the above form
needs some discussion, which can be found in the more advanced literature. We
will argue as follows. Although we do not know how to extract #(s) from the
zbove, we can examine the relation in the limit that A — 0, If we make the
Ansatz

al) = ¢ (ST 4-16)
we get, '
1 _ ) ) 1
2+ n | M(k) |2
e
1 7 d (k) —
which implies in the limit A — D that
M 2
z = Lim ——fd“ M (k” (ST 4-17)
A—0+ Wﬂi)
We can write this as
| M(k)|?
= i —_— k 1
= [‘ﬂk wrii + e D
| M) |* w(l)
= - ==
o W) + N2
1 A
— 3 2 : ST 4-18
+ m/dkiM(k)l 0 F 2 ( )

In evaluating the real part of z we make use of the rclation

LI;{I:-[F m = 7 8w(k)] (ST 4-19)
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so that finally, we get

__ i |ME)|* |« f . ’
z = - = fd"‘k (i) + 7 A%k | M(k} |2 8[fiee (k)]
(ST 4-20)
When this is exponentiated, we find that the coefficient of ¢, in ¢(z) is
P (ST 4-21)
where
2
v = 2 [ o] i Viot0) 1 st - B
1
L [ -
E E+fd*k| (8] Vig(k) )| F— o) (ST 4-22)

Thus the probability of finding ¢(¥) in the state ¢, aftet a time # is, to the extent
that our solution is approximately correct,

|a()|2 = o7 (ST 4-23)

whete v is the decay rate calculated in perturbation theory. Furthermore, the
oscillatary behavior of 2(r) is characterized by the enetgy E of the state ¢,
Shifted by the second order perturbation energy shifi, as compatison with (16-16)
shows. The only difference is that the intermediate states summed over here
form a continuum, and thus the limiting process shown in (ST 4-18) must be
used to define the incegral when the energy denominator can vanish.

Another quantity of interest is the probabiliry that the state Y(#) ends up in
the state ¢(k) at # = e This is given by |5(k, |2, where, according to
{ST 4-10) and (ST 4-16), we have

1 «@ .
6(](,00) — E M*(k)f ' e*[z_!w(l‘)]f
0

_ M*(k) - 1

oo .
7]4"’]{\ Mk} 2 dhw(k)] — 7 a

where
_h&%—m_g[ . M|
4= B A dskE—e(k’)
Thus
M*()
bk, o) =
, MK ] (ST 4-24)
G(k) — E —fdak m—!— Iﬁ'y/?..
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and the absolute square of this,

| M(k) | ®

o)|2 = -~ — .
Moo = f —E— o ¥ Gyr D)
yields the Lotentzian shape for the line width, that is, the photon energy is
centered about the (shifted) energy of the excited level, with the willth described
by fiy/2. The energy shift is small, 2nd usually ignored.

‘The same form appears in the scattering problem. Consider the scattering
of 2 "photon” of momentum k; by the atom in the ground scate. The state of
the system is again desctibed by equations (ST 4-1, ST 4-2, ST 4-7, and ST 4-9)

except that initially, which here means at # = — o, the state is specifically
given as ¢(k;), so that
bq.n) = élq — ki) air= —m (ST 4-26)

Hence the integration of (ST 4-9) gives
1 : .
blq) = olq — ki) + 1 M¥q) f dalr) & (ST 4-27)

The quantity of interest is the amplitude for a transition into a final state in which
the photon bas momentum kyacz = + oo, chatis, it is

@) ¥+ =)) = b(ky, + )

= o(k; — k) — -;i— M*k) f & alt’) &
(st = wi(ky)) (ST 4-28)

using the previous equation.
Substicuting (ST 4-27} into (ST 4-7) yields the equation

da(r) 1 1 j 5 —i (k;;[' i
—_— = oo, O = £ dt! A
7 & ¢ Mk) o ALkl Mk)|%e rm alt’) ¢
(ST 4-29)

This may be integrated, taking into account that a(— ©) = 0, to give
Mk,) [ ooy
ay = I [ gy i

‘ . v o
L a2 | e [T gy 297 (ST 430)
7 .

—o

t L,
Now the integral f 4t ¢ ™ is not well defined. The standard procedure is to

write it in the form
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. o o= idye
Lim d ¢t — 1im ;

. ST 4-
—0J o es0 Wi+ fe (8T 4-31)

The use of a convergence factor, which is then allowed to vanish in a well-
defined way, is somewhat similar to the treatment of the Coulomb potendal as
the limiting case of a screened Coulomb potential in Chapter 24. Mext, as can
be seen from Figure ST 4-2,

Fig. ST4-2. The integral in (ST4-30) can either be written as a “sum” of the
vertical strips, as in the equartion, as or, a sum of the horizontal strips, as in (§T4-32).
The same intetchange of orders is used in Eq. (ST4-33) except that the verrical
line at # = ¢ is shifted to + =,

[‘ dffe—iu(i)r'l[" cﬁ"a(:”) 'eiw(k)f” =.f’ dt”ﬂ(t”) eim(k)!”f‘ ' e—:'w(ll:)r’
— o

- —
i

wik}

+ -
-/‘, drrra(‘n)[‘—m(k)(r—r") 1]
$0 that

= M_:J_ 7:[ |M(k)!2ft 1T —fwll) (£ —2*
“n) = hlor+ e} A2 &k wlk) J . o ate")e -1

(5T 4-32)

According to (ST 4-28) the quantity of interest for nonforward scattering (so that
the first term can be ignored) is :
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:; dtals) e = T:(TA,M-I:—‘):J :., & far—we
— E‘; Ik ‘ﬁ—ggﬁj:: P/ er‘mﬂf; dt”a(t") [efmm(:_;") _ 1]
2 ;
= %ﬁ; 8op — wi)

(ST 4-33)

where in che last term we again rewrote the integral with thie help of Figure
ST 4-2. The -integration can again be done with the help of the convergence
factor trick, so that (8T 4-33) now reads
f 7 thas) o = EMKD) By — 0
—o ﬁ(m,‘ + ie)

i !M(k)}g—/‘m TR "1
+ﬁ2[d3k ol _mdta(t)e"

1 1
X [w; — wik) + e B wr + ieji

which is in the form of an equztion for the unknown. This may be solved to give

= 8 2aM(k;) 8wy — w@i)
P gk -
f e Rl + i€)
X 1
. 1 | M{k) |2 (ST 4-34)
Rty wr — wk) + fe
Hence, in the nonforward direction
bk, ) = — % M) - 2eM k) 8oy — w3)
% 1
. | M(k) |
Bt de = |k G k) + 7«

— 2mi B(fe; — Fw) Mk) M*(k,)

S j 2 ffe(ks) — o
)~ 8 [ MO [ ol ety — )
(ST 4.33)

The amplitude peaks strongly when the incident {and final) energy e (—¢) is
near the encigy of the excited state of the atom, shifred to E + AE, as in (ST
4-25). This justifies the comments made at the end of Chapter 18,
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The Yukawa Theory

The earliest nuclear physics experiments such as the scartering of o
patticles by light nuclei, and the study of a decay lifetimes,! showed that the
nuclear forces were such that the radius of the nucleus (with A nucleons) was

R = nAY? (ST 5-1)

with o =~ 1.1 X 107'* cm. Thus the nuclear density (nucleons/unit volume)
was a constant independent of A. With long-range forces, such as the electro-
static forces, thete would be A(4 — 1)/2 “bonds” and one would expect the
density to increase with A, since the kinetic energy only increases linearly with A.
The constancy of the nuclear density thus strongly suggested short-range forces.
These forces, leading to binding energies measared in MeV, rather than electron
volts, had to be significantly stronger than electromagnetic forces.

In search for a mechanism that would give tise to such forces, Yukawa in
1935 drew on the insights gained from the successes of quantum electro-
dynamics and proposed his mesen theory of nuclear forces. At the level of chis book,
only 2 qualitative desceiption of that theory can be given, The interaction be-
tween two chasged particles at rest (or very low velocities) can be described in
tetms of an “action-at-a-distance” Coulomb interaction, A mote accurare
description involves the field concept; the charged particles are sources of, and
interact with electromagnetic fields (EB) and thus they interact with each other
through the intermediaty of the field. In a description that is accurate on the
quantum level, the eleciromagnetic field is quantized, and the quanta, the
photons, are the carriers of the field.? Two charges can interact by the following
mechanism. Charge 1" emits a photon. We know from energy-momentum
consetvation that this cannot be a real photon, or equivalently, a real process;
either the photon has an energy that does nor comespond to its momentum

1 See the discussion of tunnelling in Chapter 5.
2 This is somewhat fuzzy language, and should not be raken literally. In paricniar,
it would be wrong to think of a phoron somehow catrying 2 cloud of field with it
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(i.e., E = pc), ot, the photon is real, but enetgy is not conserved in the reaction®
o=+

When that photon is absotbed by charge 2" the imbalance in epergy can be
corrected, since that process

T+ e ey

also cannot conserve energy. The question is, why should such an “exchange”
of phatons give rise to an attraction or repulsion between charges? The answer
really is that our visual description of the exchange is just an interpretation of the
second-order perturbation energy shift due to a perturhing potential Hy. The
formula {16-16), describing the energy shift from the interaczion-free energy of
two charges & and g, reads

H H
By = -3 Gl filoe) 615

LR En — Ei,
The sum is over all intermediate states that can be obtained from H; acting on
the state |ee;). Our verbal description cortesponds to the intermediate state in
which ¢, is in its initia] state, and ¢, has, through the action of H), emitted a
photon, so that {#) = |e&y,es) hete. The energy of the intermediate state is the
recoil energy of the g e (p) + (m.*)?, plus the photon enetgy pe. The sum
over intermediate states cotresponds to an integration over all passible photon
momenta consistent with momentum conservation, that is, an integration aver
all directions, Since the charge **2" could be the one that emirts the photon, one
must also calculate the contribution from the emission of the photon by ¢;and
its absorption by ¢,. We will not do the calculation showing that the Coulomb
potential emerges, because, in fact, electrodynamics is rather subtle. The calcu-
lation will be done for mesons.

What Yukawa suggested in his extremely significant paper is that there
exist a meson field, that is, 2 field that is different from the clectromagnetic feld,
whose quanta, the mesons have a finite mass, which is coupled to protons and
neutrons in a manner analogous to the coupling of photons to charged particles.
The exchange of these quanta will then give rise 1o an interaction between nu-
cleons. In this way, interactions as different as electromagnetism and the nudear
forces would at least share a common universal mechanism.* Let us go througha

$ We assume momentum conservation in both poines of view. They turn out to be
completely equivalent,

+The idea that all interactions proceed through an “exchange’" of quanta has gained
such wide acceptance that even the weak interactions are believed by many pecple to be
mediated by a “weak intermediate vector meson” whose properties arc deduced from what is
known about the weak interactions. Such a particle has not been discovered, bur it is quite
consistent to assume that it is very massive, which would explain why it has not been seen at
existing accelerators.
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very simple calculation assuming that the meson field is scalar, and that we can
write the simple Hamiltonian for the nucleon in interaction

H= 2‘L — go(r.5) (ST 5-3)

The meson field will be written in analogy to the vector potential in (22-27) as

2rcth s
o) = (_V) T (absorption)

2 ire
+ (21n:' ﬁ) gikeT gt (emission) (5T 5-4)
wl”

We are not in a position to justify all the factors. The appearance of @ in the
notmalization factor has the same source as in the photon problem; it comes
from the fact that the energy of 2 meson quantum is fis, The momentum of the
meson is fik, and since the meson has a mass, u, we now have the energy-
momentum relation

(fiw)! = (Rke)® + (u?)? (ST 5-3)

Let us now calculate the various terms in the second-order energy shift (ST 5-2).
When nuclecn 1" emits the meson, we have

2xc ﬁ“)“r gkem it
o )

No reference is made to nucleon 27, since it is unaffected by H, dusing the
emission by 1.” The absorption by “2"' leaves *'1" unaltered, and what enters is

{N: + meson |g¢| Ni) = g( (ST 5-6)

(Nu] g9] Na + meson) = g( (ST )

The energy denominator is
Einterm — Einirial = (El'ﬁ + Eny + fw) — (Exy + Exy) o fiw (ST 5-8)

En, differs from Ew, since nucleon “1*" recoils upon the emission of the meson.
However, the recoil energy is (Ak)?/2My and this is generally small in the non-
relativistic approximarion, since the nucleon mass is so large. Hence the enetgy
denominatot is just fw. Thus the energy shift is given by

2ucth 1
AF = g fl-rs  —fK-f
E=-3 o g e =

The sum is over all meson momentum states, and as always, this means an
integration over the phase space

> .[ (:wi)}; f (2r)* (ST 5-10)




484 Quantum Physics
Hence

2l gz [ eik ~{ra—r1)
AE = — —— Vidk—/——
V (2z)? !

B ggcg fdak e:‘k-(u--n)
4ar? Kk2e® + (pet/R)?

gg eik-{n—n)
PR - T [ T 5-
i fd“kkz_i_ Y (ST 5-11)

Note that we did not take into account momentum conservation, but integrated
over all momenta for the meson. The reason is that, in effect, we treat the
nucleons as infinitely massive (they do not recoil and are always at T, and T,
respectively} and thus any meson momentum is allowed in the intermediate
state. Remember that this is a very ctude calculation!

The integral can be done [it is in fact the three-dimensional Fourier trans-
form of (24-87)], and ic yields for

gz (21‘_}; . —ur|rr—rs] /A

AE = —
41|'ﬂ 47 il’l -_ l'2|

This should be doubled, because the nucleon *'2” could be doing the emitring.
Thus the energy change due to the meson field is

e—ﬂtlrl—hlﬂn

AE= —g (ST 5-12)

jrs— s

The energy depends on the sepatation, r, and drops off fast for r > f#/ue. The
range is therefore

k
a=— (ST 5-13)
pe
Given that @ =~ 1.4 X 10~ cm, we obtain
. fic ur”xaxlol“e:s
F= — o ———
T, 143 10t B
—17
~ 3 X 10 1 MeV
14 X 10°¥ 1.6 X 1078
o~ 130 MeV (8T 5-14)

If the mesons ate not scalar, but pseudoscalar, then a coupling like that
shown in (ST 5-3) does not conserve parity, since the kinetic energy is even and
the poreatial is odd under inversion. One must therefore make a scalar our of
psuedoscalar mesen field, or s derivatives. There are, on reflection, two alterna-
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tives; one is to have mesons always emitted in pairs, with the coupling
Z9*(x,7) (ST 5-15)

as for the pairwise emission of photons due to the term (e*/2me*)A; the other
is to construct an 2xial vecror (an axial vecror is like a magnetic field), and dot
it into the nucleon spin operator, so that the coupling would be®

f . 6 - Volr,s) (ST 5-16)
e

This would allow single emission of mesons. Both couplings could, of course, be
present. If the mesons are vector mesons, that is, essentially “heavy photons,”
then the coupling could be

£ . .
~ p - o, (ST 5-17)

In all cases, howevet, the range is sull 7/uc.

The mesons predicted by Yukawa were finally found in 1947. The long
range part of the nucleon-nucleon force is due to pi-mesons, whose mass was
found to be 140 MeV! They were found to be pseudoscalar, and, like photons,
they can be emitted in collisions or traasitions. The coupling (ST 5-16} explains
a great deal about pica-nucleon scatreting (the analog of the Compton effect) in
the low energy region, and Yukawa’s idea is fundamental to all the understanding
we have about the strong interactions. In derail, much more bas happened.
Thete ate also vector mesons (spin-parity 17) and spin 2 mesons, and many
others. They can all be exchanged, and emitted, and, since the coupling to the
nudeons is strong, they can be exchanged not just once, but many times, The
calculations are beyond present-day mathematics, and it is a cutious fact that the
nudear force problem, which started all this, is still less well understood than, for
example, high-energy scateering. From our point of view, it is very important to
note that even in this new realm of short distances and strong forces, there is no
reason to suppose that quantum mechanics is not the correct way to describe
nature,

& The factor B/ uc is just there to make fdimensionless.
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appendix A

The Fourier Integral

and Delta Functions

(_Ionsicler a function f{x) that is periodic, with period 2L, so that
fl) = flx+ 21) (A1)

Such a function may be expanded in 2 Fourier Series in the interval (—L,L}, and
the series has the form

- nEx = . HEx
f(X)= 3 Awcos— + 2 B.sin— (A-2)
n=0 . L n=L L
We may rewtite the seties in the form
= 3 aemt (A-3)
e =
which is cettainly possible, since
< 4 nTX 1 ;i ~
'\ ! COST _ (e.mrx/‘L + e tmrfo)
Pes oY :
g I| sin ig;r_x - i (eiu-x/l_. _ e—inrx,’L)
i ' L 2i

The coefficients may be determined with the help of the orthoncrmality relation

1 L ; ; 1 m=n"
e e inxx/L.  —imax/L - awm - { A4
2L ) -1 ¢ ? 0 m#n (A-4)
Thus
1 f* —immx/L
=g e @)
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Let us now rewrite (A-3) by inttoducing As, the difference between two
successive integers. Since this is unity, we have :

fo) = 3 an ™" An

L . A
== a4 L ror (A-6)
T & L

Let us change the notation by writing

7 = k : (A-7)
and
"TA" =~ Ak (A-8)
We also write
=20 (49)
Hence (A-6) becomes
fly= 2 i\/%% & Ab (A-10)

U If we now ler L— o, then J approaches  continuous variable, since Ak becomes
I mﬁmtcsxmally small. If we recall the RJemann deﬁmtlon of an mtegral we see
' rhat in ﬂmc hmlt (A-10) ETY “be wrxtten in the form
4 b

ERTS

;"\

T e = \/_ f A(R) € di (A11)

L

The coefficient A(E} is given by

A= Vo f: dflx) e

- —\/E:T? f:,, def(x) e~ (A12)

Equations A-11 and A-12 define the Fourier integral cransformations. If we
insert the second equation into the firsc we get

f = 2_11r.[ K ”iﬁx,[ " ) e (A13)
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Suppose now that we interchange, without question, the order of integrations.

We cthen get
® L ® h(x —1) -
fl) = [ #H(y) [ZT f dk & ] (A-14)

For this to be true, the quantity é(x — 3) defined by
x — gy = — f Ak S (A-15)

and called the Dirac Delta ﬁmmom must be a vcxy pecu.har kind of function; it
must vagish when % 32, and it must tend to infinity in an appropriate way when
x — y = 0, since the range of integration is infnitesimally small, It is thetefore
not a function in the usual mathematical sense, but it is rather a “'genetalized

function” or a “distributicn.” It does not have any m&ml‘:&hy tself, but it
can bc deﬁned pt0v1dcd it always appeats in the fotm

[ =)

with the function f{x) sufficiently smooth in the range of values that the argu-
ment of the delta function takes. We will take that for granted and manipulate
the delea function by itself, with the understanding that at the end all the relations
that we write down only oceur under the integral sign.

The following properties of the delea function can be demonstrated

0]

8(ax) = ﬁ 5(x) (A-16)

" This can be seen to follow from |
169 = [ 7t o - (a17)
If we write x = at and y = a7, then this reads
) = Lol [ dofton) s1ate —
On the other hand,
fiat) = [ dufton) ot - ) -
which implies our result.

1 The theory of discributions was developed by the mathematician Laurent Schwartz,
An introductory treatment may be found in M. F. Lighthill, Introduction ro Fowrier Analysis
and Generalized Fumctions, Cambridge University Press (1958).
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(ii) A relation that follows from (A-16) is

Hxt — &%) = [6(x — &) + 3(x + )] (A-18)

\ l

This follows from the fact that the argument of the delta function vanishes ar
x = aand x = —4. Thus thete ate two conttibutions:

8x* — a®) = H(x — 2) (x + 4)]

x — a) + x4+ )

1 5( 1
| %+ & | — |

Eﬂ 3(x — 4) + 8(x + 2]
More generally, one can show that
5(x - Jq)
Vdf/ dx| oy
where the x; are the roots of f{x] in the interval of integration,
In addition to the representation {A-15) of the delta function, there are

othet tepresentations that may prove useful. We discuss several of them.
{2} Consider the form (A-15), which we write in the form

L] = Z (A-19)

8(x) == — Lim f dk {A-20)
‘!I' —3 o
The integral can be done, and we ger
1 x _ ix
#(x) = Lim — ——-°
Lo 27 x
- Lim SR Ix (A-21)
L— @ X
(b) Consider the function A(x,4) defined by
Alxya) = 0 x < —a
1
= —a < x<a {A-22)
=0 a < x

Then
() = Lim A(x,q) . {(A-23)
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It is clear that an integral of a product of A(x,4) and a fanction f{x) thar is
smooth near the origin will pick out the value at the origin

I;i_r:;[zixf(x)ﬁ(x,a) = f(0) !ﬁg[dxﬁ(x,a)
= f(0)

{(c) By the same tcken, any peaked funcrion, normalized to unit area
under it, will approach a delra function in cthe limit that the width of the peak
goes ta zero. We will leave i to the reader to show that the following are repre-
sentations of the delta function

a

' 1
8(x) = Lim —

PR A

{A-24)
and

5(x) = im \[ e (A-25)

(d) We will have occasion co deal with orthonormal polynomials, which we
denote by the general symbol P, (x). These have the property that

[ dxP(x) Po(x) w(x) = bun {A-26)

where w{x) may be unity or some simple function, called the weight function.
For functions that may be expanded in a series of these orthogonal palynomials,
we can write

fix) = 2 alux) (A-27)
If we multiply both sides by w(x)P.(x) and integrate over x, we find that
= [ dyut 100 Pat) (a-2)

If we insett this into {A-27) and prepared to deal with “generalized Functions,”
we freely interchange sum and integral, we get

fix)

i

I

2 P¥) ] dyuly) £(3) Pul(y) o

f &y (E P.(x) w(J) P»(y)) ' "(A-zg)

Thus we get still another representation of the delta function, Examples of the
P.(x) ate Legendre polynomials, Hermite polynomials, and Laguerre poly-
nomials, all of which make their appearance in quantum mechanical problems.
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Since the delta function always appears multiplied by a smooth function
under an integral sign, we can give meaning to its derivatives. For example

f: )~ i03) = f e 1f00 691 - f Ca P9

Y 0]
= —f_!a{x o 8)

- (%),, - (A-30)

and so on. The delta function is an extremely useful tool, and the student will
encounter it in every part of mathematical physics.
The integral of a delta function is

[ dyby—ay=0 x<a

=1 x> a (A-31)
f(x — a)

I

which is the standard notation for this discontinuous function. Conversely, the -
detivative of the so-called step famction is the Dirac delta function:

2 o = ) = 8 = ) (A-32)
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Operators

In this appendix we discuss some topics refated to linear operators. The
set of admissible wave packets are square integrable functions. Since

¥(x) = ah(x) + Bia(x) {B-1)

is square integrable, if Ya(x) and (%) are square integrable and «,f are arbicrary
complex numbers, we say that the ¢'s form a lnear space. An operatot A on this
space is 4 mapping:

AY) = $(%) (B-2)

where ¢(x) is also square integrable. Among all the operatots there is a subset
called linear operators, which have the property that

Aof(x) = aAy(x) (B-3)
where a is an arbitrary complex constant, and
Alocfaix) 4 Bia(x)] = adin(x) + Badlx)- (B-4)

with a,8 being complex numbets. A further subset is the hermitian sperators for
which the expectation value for all admissible ¥(x),

e = [ o) 4402 8:5)
is real, First we prove that for all admissible 4 and ¥,
' f Yalx) A(x) dx = f [Ad2())* dn(x) (B-6)
holds. '
The reality of {4} implies that
[ av it = [ asLagtone vt (87)
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Now substitute for J(x)
$(x) = dalx) + Ma(x) (B-8)
'This implies chat

f dx(¥s + Nya) AW -+ M) = f dx(dy + Mba) (A + Aetfn)® (B-9)

Using hermiticity, that is,

f duol, A = j dopi(Ap)*  i= 12 (B-10)

we obtain
\* f Veddr f A = A f A 4N f BARY (B11)

Since ) is an arbitrary complex number, the relations for the coefficient of A and
for the coefficient of A* must separately hold. Thus

f doys iy = / A AP g (B-12)

The next result thar we wish to prove is that eigenfunctions of a hermitian
operator correspending to differens eigenvalues ave orthogonal. Consider the two
equations

Aga(x) = anfix)
and .
[Afa(x)]* = asta(x) (B-13)

Note that a is real since the eigenvalues of a hermitian operator are real. Take
the scalar product of the first equation with ¢s and the second equation with ya,
Thus

[ assian) = o [ dit i) &

[ﬂfx(/i%)* dalx) = ﬂz[\f/;(x} Pilx) dx (B-14}
Subtracting, we get _
(a — as) f Vo) () dx = f A — f d( Agn)*

=0 {B-15}

Thus, if &7 # a3, we have

j Vo) i) dx = 0 (B16)
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1f we define the hermitian conjugate of the operator A by A%, so that

f dx(Aa)* o = [ g A (B-17)
then for a hermitian operator
A=A (B-18)
We can prove that
(AB)t = BtA" (B-19)

To do so, we note that

| f Yi(ABY g = f (ABg:)*

f (Bo)* (410}

f ¥3BH(AN)
[ ¥2B'A'Y: (B-20)
A generalization of this is
(ABC...Z0 = Z'...CtB At (B-21)
“Thus, a product of two hetmitian operaters is only hermitian if the two operators
commute:
(ABj' = B'A' = BA = AB + B, 4] (B-22)
Another tesulr is that for any operator A, the following
A4+ A7
{4 — A7 (B-23)
AAf

will be hermitizn.
Next we prove the “uncertainty relations.” We define

(QAy = (A} — {4 = (4 — 4N (B-24)

U=4— (A4}
V=5B-— {B) (B-23)
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and consider
o= U+ Ay (B-26)
Then
10 = [ e 0 (827

With A and B hermitian, so are [V and V7, We may thus rewrite:
109 = [ et + AV Oy + 2
= [awpr @ + 2 [ @ ow
+n [ i o) - vy @
= [ 2@ 12t 2 v

= (44)* + N(AB)* + ﬂfdmﬁ* [Wvlg =0

= (AA)* + A¥AB): + i {[A4,B]) {B-28)
The minimum will‘occur when
2MAB)? + i([AB])=0 (B-29}

Substituting the solution

; (4,81}
2 (AB)?

{B-20)

into I(\), we get
{448y (4,87

405 T zame 2O

(A A).” —_

thae is,
(a4)* (aBy* > | (fl4,B] (B-31)
Incidentally, the minimum value occurs when ¢ is such that Uy and Vi are
ptopottional to each other. For the case of the operators x and p, this means that

iod(x) | _
i + Bafix) = 0 {B-32}

whose solution 1s
Plx) = C eV (B-33)
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a ground state eigenfunction of the harmonic oscillator. It is important to note
that the uncertainty relation

A4y (AB)' > § (([4,B]))* (B-34)
was derived without any use of wave concepts or the reciprocity between a wave
form and its fourier transform. The results depends entirely on the operator
properties of the observables A amd B.

We conclude the appendix by listing some properries of commurators.
®
[4,B] = — [B.A] (B-35)
(ii)
[A4.B]' = (4B)' — (BA)

= B4t — AtBt
= [B,41] (B-36)
(iiiy If A and B are hermitian, so is #{4,B]. This follows directly from the
preceding properties.
{iv}

[4B,C] = ABC — CAB
= ABC — ACB + ACB — CAB
= AB,C]+ [4,C] B (B-37)

(v) Tt may be shown term by term that
4Bt = B+ (45 + - [4[4B]] + % [Al4[4Bl]] + ... (B38)

This is known as the Baker-Hausdorff lemma, and is of some utility in manipule-
tions of operators.
(vi) It is easily established that

[4.[B,c]] + [BC.A]] + [¢[4.B]} = o (B-39)

This is called the Jacobi identity,

A mote extensive discussion of operators and the linear spaces that they are
defined on may be found in J. D. Jackson, Maihematics for Quantum
Mechanics, W. A. Banjllmin, Inc., New Yotk (1962).
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D. Bohm, Quantum Theory, Prentice-Hall, Inc., 1951.

The book is discursively written, on a level comparable to the present book.
The author pays mucll attenrron to the ptinciples of quantum theory, and
gives an excellent discussion of the quantum theory of the measurement
process. There are few applications and not many problems.

! Many books have been written 2bout quantum mechanics. [ have studied from some
of them, read others, glanced at a few, and probably missed some others. The list given here
is npor meant to be exhaustve. and no book is criticized by its omission. In particulat, no
books on guantum chemistry are listed.
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3. 8. Borowitz, Fundamentals of Quantwm Mechanics, W. A. Benjamin, Inc.,, New
York, 1967.
This is a well-wricten book, about half of which is devoted to the theory of
waves and to classical mechanics, The level is comparable to that of the
present book.

E. U. Condon and G. H. Shortley, The Theory of Atmic Spectra, Cambridge
University Press, Cambridge, 1959.

This is a very detailed reference book on all aspects of atomic spectra, although
it does not make use of the recent techniques that depend on group
theory. The book is very advanced, and thus its shortcomings in the
technical developments are not important for anybody but the specialist.
It is very useful for the student.

A. 8. Davydov, Quantum Mechanics, Addison-Wesley Publishing Co., Inc., 1965.

This is an advanced, comprehensive textbook. The bock is a lirtle weak on
fundamentals, but treats many physical systems. There are excellent
discussions of relativistic equations, group theory, second quantization,
and some aspects of solid-state theory.

+ R. H. Dicke and ]. P. Wittke, Introduction ts Quanture Mechanics, Addison-Wesley
Publishing Co., Inc., 1960.
I enjoyed this book very much. It is on a level comparable to the present book,
and discusses a few topics, notably quantum statistics, that are not treated
here. The problems ate excellent.

+. P. A. M. Dirac, The Principles of Quanium Mechanics (fourth edition), Oxford,
Clarendon Press, 1958.

This is a superb book by one of the major creators of quantum mechanics. The
student who has studied the material in this book will have no trouble
with Ditac; if he is at all serious about masteting quantum mechanics, he
should sooner or later go through Dirac’s book.

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-
Hill Book Co., 1965. '

In 1948, R. P. Feynman proposed a different formulation of quantum mechanics.
in this beok the equivalence of this formulation to the standard theory is
demonstrated, and the “path integral ” expression for the general amplitude
is exploited in a number of calculations. The selection of material is very
intezesting, and the point of view is different from the one developed by
the author. Thus this somewhat more advanced book presents an excellent
complement to this book.

R. P. Feynman, R, B. Leighton, and M. Sands, The Feynman Lectrres on Physics,
Vol. 3, Quantum Mechanics, Addison-Wesley Publishing Co., Inc., 1965,
In this introduction to quantum mechanics, Feynman abandons the path
integral and approaches the subject from the point of view of state vecrors,
A large number of fascinating examples are discussed with the minimum
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of formal apparatus. A supetb complementary bock, whose only short-
corhing is the absence of problems.

¥ K. Gottfried, Quantam Mechanics, Vol. 1, Fundamentals, W. A. Benjmain, Inc.,
1966,

This is a very advanced book, distinguished by the care with which the various
topics ate discussed. The treatment of the measurement process and of
invariance principles is excellent. The student who has mastered the
material in this book should be able to read Gottfried’s book, provided
he has acquired the necessary mathematical equipment.

W. Heisenberg, The Physical Principles of the Quantum Theary, Dover Publications,
Inc., 1930.

This reprint of some 1930 lectures given by Heisenberg on the physical sig-
niftcance of the quanrum theory still makes good reading. The discussion
of the uncertainty telations is particulazly useful.

F. A. Kaempfler, Concepts in Quantum Mechanscs, Academic Press, 1563,

This is not a rextbook in any sense. A variety of topics are discussed. The
selection of topics is imaginative, and the discussion informative. The
level is somewhar above thac of the present book.

H. A. Kramers, Quantum Mechanics, Intetscience Publishers, Inc., 1957.

This book by one of the founders of the subject is at its hest in the discussion of
spin and the introduction o relativistic quantum theory, both rather
advanced subjects. The student who is comfortable with quantum me-
chanics will find browsing through this book enjoyable and rewarding.

L. D. Landau and E. M. Lifshitz, Qmm.mm Mechanics (Nonrelasivistic Theory)
(second edition), Addison-Wesley Publishing Co., Inc., 1965,

The book by Landau and Lifshitz is one of a series of superb books covering ail
of theoretical physics. [t is hard to think of this as a textbook for any but
the most sophisticated students. Any student, however, once he reaches
the advanced level, will find much that is useful in this book. There is an
assumed mathematiczal facility on the part of the student.

w E. Mandl, Quastum Mechanics, Butterworths Scientific Publications, London,
1957.

This book contains a good discussion of the foundation of wave mechanics
at a level that is comparable with the present book.

A. Messiah, Qrantum Mechanies (in 2 volumes), John Wiley and Sons, Inc., 1968.

This book gives a complete coverage of quantum theory from the treatment of
one-dimensional potentials through the gquantization of the electro-
magnetic freld and the relativistic wave equation of Dirac, It is an advanced
book, and it assumes a mathematical sophistication that few first year
graduate students possess. It is an extremely worthwhile book.
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. E. Merzbacher, Quantum Mechanies (second edition) John Wiley and Sons, Inc.,
1970.

Together with the book by Schiff, this is the standad first year graduate textbock,
and deservedly so. The complete range of concepts and phenomena is
treated with econcmy and taste. The book should be available to the
student who has gone through the material in this book.

£ D. Park, Intraduction to the Quantum Theory, McGraw-Hill Co., 1964.
This attractive book is written on the same level as the present book. Among the
topics discussed by Park, and absent in this volume, is the subject of
quantum statistics, which is treated with claricy.

W. Pauli, Die Allgemeinen Prinzipien der Wellenmechanik, Handbuch der Physit,
Vol. 5/1, Springer Verlag, 1958.

‘The advanced student who reads German will find in this repriat of 2 1930
article by Pauli a concise definitive discussion of quantum mechanics.
Thete ate no applications, but all of the important matters are there.

¥ J- L. Powell and B. Crasemann, Quantum Mechanics, Addison-Wesley Publishing
Co., Inc., 1901,

The strength of this book is in the painstaking working out of 2il of the mathe-
matical details of wave mechanics and mattix mechanics. Probably all of
the mathemarical aspects of these subjects that have been bypassed in our
book can be found here. There is 2 good discussion of the WKB approxi-
mation and of the general properties of second order differential cquarions,
There ate relatively few applications, and there are more exercises than
problems.

M. E. Rose, Elementary Theory of Angular Momentum, John Wiley & Sons, Inc.,
1937.
An advanced treacment of angular momentum and the many zpplications to
atomic and nuclear physics.
ol J. J. Sakunai, Advanced Quantum Mechanics, Addison-Wesley, Inc., 1967,
An excellent book art a level just above Merzbacher and Schiff. For the advanced
student,
«_D. 8. Saxon, Elementary Quantum Mechanics, Holden-Day, San Francisco, 1968.
This book is on the same leve] as the ptesent one, and it is a useful reference,
since the selection of topics is just a little different, as is the emphasis and
the choice of applications. The book coartains an excellent set of problems.

L. L. Schiff, Quantum Mecharics (third edition}, McGraw-Hill Book Co., 1968

This is one of the standard first year graduate textbooks. It is perhaps a litile roo
compact, and thus most suitable for the well-prepared student. The level
of mathematical sophistication assurmed is abave that of the reader of the
present book.

D. ter Haar, Selected Problems in Quantum Mechanics, Academic Press, Inc, New
York, 1964.
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Both the student and the teacher will find this a very useful volume. Most of the
problems are on the level of this book. There are a few othet books worth
listing as part of the general reference list. These are books that deal in
detail with some of the topics that are touched on illustratively in this
volume.

B. L. Cohen, Concepts of Nauclear Physics, McGraw-Hill Book Co., 1972 (for
auclear physics).

C. Kittel, Iniroduction to Solid State Physies (fourth edition), John Wiley & Sons,
Inc., New York, 1971 (for solid-state physics).

E. Segre, Nuclei and Particles, W. A. Benjamin, Inc., New York, 1964, (for
experimental aspects of nuclear and particle physics).

D. H. Petkins, Introduction to High Energy Physics, Addison-Welsley Publishing
Co., 1972. ’

M. Abramowitz and . A. Stegun (Eds.), Handbeok of Mathematical Functions,
National Bureau of Standards, 1964.

W. Magnus and F. Obethettinger, Formulas and Theorems for the Special Functions
of Mathematical Physics, Chelsea Publishing Co., New York, 1949.

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (Eds.), Higher
Transcendental Functions (The Bateman Project), Volumes 1, 2, and 3,
McGraw-Hill Book Co., New York, 1953,

1. 8. Gradshteyn and I, M. Ryzhik, Tables of Integrals, Series and Products, Aca-
demic Press, New York, 1965.






pb/vsica] constants’

Ny (Avogadro’s number) = 6.022169(40) X 10% mole™?

¢ {velocity of light) = 2.9979250{10) X 10" cm sec™!
4.803250(21) X 10~ esy
1.6021917(70) X 10~ coulomb
1.6021917(70) X 10~% erg
6.382183(22) X 10722 MeV sec
1.0545919(80) X 10~% etrg sec
1/137.03602(21)

1.380622(59) X 1018 erg Kt
9.109558(54) X 10~* gm
0.5110041(16) MeV/¢?

mp (proton mass) 938.2592(52) MeV/c?

mp/ M, = 1836.109(11)

1 amu (1/12 X mem) 931.4812(52) MeV/¢?

& = (B/mea) 0.52917715(81) X 1078 cm

R, {=melo?/2) 13.605826(45) eV = 1 Rydberg
G (gravitational constanrt) 6.6732(31) X 1078 cm® gm! sec?

¢ (electron charge)

1 MeV
i (Planck constant/2x)

H

a (fine structure constant ¢2/ic)

£ (Boltzmann constant)

m, (electron mass)

It

eh
2

EBok: (Boht magneton) = 0.5788381(18) X 10 MeV gauss™

! Compiled by Stanley J. Brodsky, as presedted in Reviesws of Moders Physics, 45,(2),
Parc II. The figures in parentheses correspond o the statistical uncertainey {one standard
deviztion) in rhe lasc digirs of the main number,
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index

Absorption, of radiation in matter, 40%
in scattering, 384

Absorptivity, 1

Addition, of angular momenta, 243
of spin and orbital angular momentum,

246

of two spins, 243

Adiabatic theorem (problem), 361

Aharanov-Bohm effect, 222

Alpha decay, 89

Angular momentam, 167
commutation relations, 159, 232
condition in Bohr atom, 15
conservation, 158
eigenfunctions, 175
eigenvalue problem, 169, 171
matrices, 229

Analog states, 431

Annihilation of antiprotons, 428

Antibaryons, 427

Antiparticles, 423

Associated production, 438

Atomic structure, 299
shell structure, 303
periodic table, 307

Auteionization, 295

Averaging over initial states, 357, 360, 374

Band stzucture, 100
Barrier penetration, 85, 471
Barvon numbat, 428
Bessel functions, 225
spherical, 182
Beta decay, 450
Black body radiation, 1
energy density, 2, 5, 375
Black disc scattering, 385
Bohr atemic model, 14
Bohr orbits, 18, 36, 39
Bohr correspondence principle, 19
Bolizmann factor, 375
Boltzmann probability distribution, 6, 322
Bond number, 333
Bom approximation, 397

for Cqulomb scattering, 399
limitations, 400
Born-Oppenheimer approximaticn, 314
Born probability interpretation, 46
Bose Einstein statistics; 148
Bosons, 148
Bound states in potential well, 80, 185
Box potential, 60, 151, 162, 187
Bragg conditions, 13, 100, 404
Breit-Wigner formula, 392
Bremsstrahlung, 419
Building-up principle, 303

Center of mass motion, 145, 156
Circular orbits in hydrogen atom, 200
Classical limit, equations of motion, 120
motion of electron in magnetic field, 217
Classification of molecular orbitals, 321
Coherent scattering by crystal, 403
Cold emission, 87
Collisicn broadening of spectral lines, 3656
Collision theory, 379
Comnutation relations, 499
forp and x, 51, 141
for angular momentum, 159, 171
Complete se1 of commuting observables,
119
Complete set of eigenfunctions, 65, 114,
117,131
Compton effect, 10
Klein-Nishina formula, 417
role in absorption of radiation, 416
Compton, wavelength, £2
Conservation, of angular momentum, 158
of momentuarm, 142
of parity, 67, 450 .
of probability, 47
Constant of the mction, 67, 121
Cerrespondence principle, 19
electron motion in magnetic field, 216
intensity of dipole radiation, 358
normalization of vector potential, 344
Cross section, differential, 380
with absorption, 384
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for black disc, 385
for identical particles, 402
optical theoram, 384
photoelectric effect, 413
1elativistic invariance, 463
in terms of bonnd state energy, 394
in terms of phase shifts, 383
total, 385
total elastic, 383
Cylindrical coordinates, 215

Davisson-Germer diffraction experiment, 13
De Broglie wavelength relation, 13
Debye frequency, 371
Degeneracy, 70, 375
for central potentials, 176
for Coulomb potential, 198
lifting in atoms, 302
Degenezate eigenfunctions, 118
Degenerate perturbation theory, 258
Stark effect, 263
in matzix language, 265
Delta function potential, 77,93
Density of states, see Phase space
Detailed balance principle, 375
Dicke-Wittke cage, 21, 170
Differential operators for anguiar mo-
mentum, 168
Differential scattering cross section, 380,
382, 399
Dirac Delta function, 68, 491
Ditac netation, 113
Dispersion, 119
Doppler broadening, 367
Double skit experiment 20, 35
Dulong-Petit law of specific heats, &

Effective range formula, 394
Ehrenfest theorem of classical Llimit, 122
Eigenfunctions, 59

orthogonality, 496
Figenvalue, 59
Eigenvalue eguation, 58

for infinite box, 60

for Ly, 169

in matrix form, 231
Einstein equivalence principle, 37, 466
Einstein model of lattice, 371
Einstein photoelectric effect formula, 7
Electric dipole moment, 260, 338
Electric dipole approximation, 352

selection rules, 354

transition rate for 2P — 15, 357
Electric quadrupole transitions, 354
Electron in constant magnetic field,

Schrodinger equation in cylindrical
coordinates, 215

coordinates, 215

classical motion, 217

carrespondence limit, 218
Electromagnetic energy density, 344
Elementary particles, 423
Emissive power, 1
Energy opetator, see Hamiltonjan
Energy shift, first order, 256

helium ground state, 286

helium excited states, 289

second arder, 257,477
Fotvos experiments, see Einstein equivalence

principle

Equilibrium congitions in cavity, 374
Equipartition of energy, 4
Equivalence principle, see Einstein
Exchange effect in helium, 289
Exchange operator, 147
Expansion postulate, 62, 112
Expectation vaiues, 48

for & in hydrogen, 206
Exponential decay rate, 365, 477

Fermi-Dirac statistics, 148
Fermi energy, 87, 152, 163
Fermions, 148
Feynman-Hellmann theorem (probiem),
297
Fine structure constant, 17
Flux, 47, 70, 183
Flux conservation in radial equation, 184
Four-vectors, 461
Fourier integral, 27, 430
Fourier series, 489
Fowler-Nordheim forrmula, 87
Fres particles, 67
Schrodinger equation, 45
radial equation, 181

Gauge invariance of Schodinger equation,
218

Gange transformations, 210

Gedankenexperiment, 20

Gell-Mann-Neeman unitary symmetry, 442

GellPMann-Nishijima strangencss theory, 439

Geli-Mann-Okubo mass formula, 449

Gelt-Mann-Pais prediction of X, , 454

Gell-Mann-Zweig quark model, 446

Golden Rule for transition rate, 350

Gravitationzl deflection of light, 467

Gravitationzl frequency shift, 37, 373, 467

Ground state, 61, 130

Group velocity, 31

Gyromagnetic ratio for electron, 235

Hamiltoniah, 53




far atom, 299

for electron in external field, 211, 342
Harmonic oscillator, 101, 127

operator methods, 127

eigenfunctions, 133

matrix form, 228
Hartree self-consistent method, 300
Heisenberg uncertatnty relations, 33, 36,

120
Heisenberg picture, 135
Heisenberg explanation of ferromagnetism,
291

Heitler-London method for molecules, 329
Helium atom, 283, 303

exchange interaction, 289

first order levei shifts, 286

inflaence of spin, 286, 289
Hermitian conjugate operator, 115
Hermitian operatoss, 52, 114, 495
Hund’s Rules, 291, 304
Hybrid orbitals, 336
Hydrogen atom, Bohr model, 12

radial equation, 195

relativistic effects, 271

spectrum, 197

spin-orbit coupling, 274
Hydrogen molecule, 316, 323, 327
Hypercharge, 441
Hyperfine structure, 277

Identical particles, 146, 250
scattering, 401
Induced absorption and emission, 373
Inelastic collisions, 384
Infinite box, see Particle in box
Intensity of spectral lines in molecules, 321
Iatensity of dipole radiation, 358
Intensity and spin, 358
Internal conversion (problem), 362
Interpretation of wave function, 46
Interpretation of expansion coefficients, 64,
113
Invariance under discrete displacements, 89
displacements, 143
particke-antiparticle conjugation, 425
rotations, 157
reflections, see Parity
Isotopic spin, 429
conservation, 434
multiplets, 431

K® —K° system, 454

regeneration, 455
Kirchhoff laws of thermal radiation, 1, 2
Kronig-Penney model, 98

Index 511
Lagrange multiplier in variational principle,
300
Laguerre polynomials, 199
Lambda particle discovery, 436
Larmor frequency, 213
Laser, 376
Lee-Yang on parity nonconservation, 451
Legendre polynomials, 175, 176, 206
Levinson theorem, 393
Lifetime, 365,473
Line width, 366, 478
collision broadening, 366
Doppler broadening, 367
recoil shift, 368
Linear operators, 58, 114, 495
Lorentz force, 211, 223
Lorentz invadants, 461
Lorentzian line shape, 366, 478

Magic numbers, 188
Magnetic dipole moment, 235
of spin, 235
Magmetic dipole transitions, 355
Magnetic flux quantization, 220
Mass absogption coefficient, 415
Mass formula for baryons and mesons, 449
Matrices, 229
Matrix products, 228
Mairix representation of operators, 229, 230
Maxwell’s equations, 209
Mean free path, 411
Meissner effect, 221
Meson theory of nuclear forces, see Yukawa
Miller indices of Bragg planes, 405
Molecules, 313
classification of states, 321
electronic energies, 316
orbitais, 328, 332
one-dimensional model, 93
specific heats, 322
structure, 327
types of motion, 314
Momentum operator, 49, 142
hermiticity, 52
eigenfunctions, 67
Momentum conservation, 142, 143
of photon, 10
space wave function, 50
Mossbauer effect, 368

N-particle system, 141
Hamiltonian, 141

Neutrinp, 450

Neutron-proton scattering, 395
potential spin dependence, 396
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Normalization of momentum eigen-
functions, 68

Normalization of eigenfunctions, 112

Nodesconnection with energy, 62

Nucleon isotopic spin, 430

Observables, 119
Operators, 51, 58
hermitian, 52, 495
lincar, 58, 495
raising and lowering, 130, 171
methods for eigenvalue problems, 127
Optical, theorem, 384
Orbitals, 291, 328
Orthonormality conditions, 61, 112, 496
Orthohelium, 292
Overiap integral, 318

Pair production, 418
showers, 419
Paired electrons and bonding, 331
Pais proposal of associated production, 438
Pais-Piccioni regeneration experiment, 455
Parahelium, 292
Paramagnetic resonance, 237
Parity, 65, 67
nonconservation in weak interactions,
450,453
of pion, 251
selection rules, 354
Parseval’s theorem, 50
Partial wave scattering amplitude, 381, 384
Particle in box, 60
eigensolutions, 61
in three difmensions, 162, 187
Pauli exclusion principle, §48, 150
Pauli principle, effect on molecalar spectral
intensities, 321
and isotopic spin, 430
and two-spinor states, 250, 251
Pauii spin matrices, 232
Peneétration of wave functions, 78
Periodic wave functions, 52, 99, 348
Periodic potentials, 98
Periodic table, 307
Permanent dipole moment, 260
Perturbation theory, calculation of nuclear
force from meson exchange, 483
Perturbation theory, convergence, 266
degenerate, 258
first order shift, 256
second order shift, 257, 477
second order matrix element, 417
time dependent, 341
time independent, 255
Phase shift for radial solution, 184

at resomance, 389
for square well, 189, 389
at threshold, 389
Phase shift expansion of scattering amplitude,
383, 388
Phase space, 348 .
for many particle state, 350
Phase of wave function, 46
Phonons, 372
Photons, 10
Photon momentum, 10
absorption and emission, 342, 345
Photodisintegration of deuteron, 355
Photoelectric effect, 8
angular dependence 415
cross section, 413
energy dependence, 414
matrix element, 410
Pions (pienesons), 251, 428, 485
Panck constant, 5, 16
Planck radiation formula, 5
derivation, 373
Plane wave expressed in spherical harmonics,
191
Polarizability, 262
Polarization of photon, 345
summed over, 357
Population inversion, 377
Pasition operator, 133
eigenstates, and the interpretation of wave
function, 133
Positron, 417, 423
Positronium, 425
annihilation rate, 426
charge conjugation, 426
Potential barrier, 84
Potential scattering and phase shift, 184,
189, 380, 389, 39(
Potential scattering in Born approximation,
397,401
Potential step, 75
Potential well, 78
bound states, 80
odd parity bound state conditions, 83
Precession of spin, 235
Probability conservation, 47
Probability interpretation of wave function,
46

Probability interpretation of expansion co-
efficients, 64; see Expansion postulate

Propagation of wave packets, 30

Qliantizaﬁon of angular mementum, 15, 17,
22

Quantization of eleciromagnetic field, 343
Quantum of radiation, 7




Quantum electrodynamic form of vector
potentigl, 345
Quark model, 446
composition of mesons, 447
compesition of baryons, 448
mass splittings, 449

Radial equation, 161, 176, 179
regular and irregular solutions, 180
asymptotic solution, 184
" salution for hydrogen, 199
plots of sclutions, 201-205
Radiation of atoms, 341
Radiation length, 419
Radiative transitions, matrix eleinent, 351
2P — 18 rate, 166
Raising operators, 131, 171
Ramsaver-Townsend effect, 80
Range of nuclear forces and meson mass,
484
Rare earths, 306
Rayleigh-Jeans black body radiation law, 4
Reslity of expectation values, 52
Recoilless emission (Mossbauer effect), 369
Reduced mass, 145, 157
effect on spectrum, 197
Reflection by potential step, 76
Relativistic corrections te hydrogen
spectrum, 271
Relativistic kinematics, 461
Relativistic transformation between lab and
center of mass frames, 462
Resaomance energy, relation to position of
energy levels, 390
Resonant scattering, 389
Breit-Wigner formula, 392
Resonant states in Helium, 295 see also
Autoionization
Resonant siates in particdle physics, 432
Riemann-Lesbegue lemma, 382
Ritz variational principle, 292, 299, 318
Rotational motion of molecules, 316
Rotational states and the Pauli principle,
321
Rotator, eigenvalue equation, 170
with identical particles, 170
Rutherford, planetary model, 14
cross section for Coulomb scattering, 400

S wave scatiering, 392
relation befween amplitude and bound
state position, 393
Scalar product, 113
Scattering by crystal, 403
Scattering of identical particles, 401
Scattering length, 394, 396

Index 513

Scattering matrix in onc dimension (problem),
106 ’
Scattering, spin dependence, 395
Schrodinger equation, 32
free particle, 45
cylindrical coordinates, 215
initial conditions, 45
for N particles, 141
particle in potential, 53
separation of centet of mass motion, 155
sepatation of angular coordinates, 161
separation: of time dependence, 57
in three dimensions, 155
time dependant, 57
time independent, 57
Schrodinger picture, 135
Schwartz inequality (problem), 123
Screened Coulamb potential, 399
Screening of nuclear charge, 289, 292
Selection rules, 261, 309
for orbital anguiar momentum, 353
for parity change, 354
for spin change, 354
for zcomponent of angular momentam,
353
role in Zeeman effect, 213
zéro-zero trangitions, 356
Shadow scattering, 386
Shell model of nucleus, 188
Simultanecus eigenfunctions, 65, 71, 117
conditions on operators, 119
Singlet state, behavior under particle ex-
change, 250
Slater determinant, 149, 302
Sommerfeld-Wilson quantization rule, 19
Specific heats of maolecules, 322
vibrational effects, 324
Spectrum of hydrogen, 17, 197
modifications, 274
Spectrum of helium, 285
Spectrum of momentum operator, 68
Spectrum in particle physics, 439
Spherical Bessel functions, 182
zeros, 187
Spherical Hankel functions, 182
Spherical harmonics, 175
Spherical symmetry of closad shells, 303

] Spherical waves, 183

incoming and outgoing flux, 184, 380
Spin % operators, 232
Spin component expectation vahues, 235
Spindependence of scattering lengths, 396
Spin-dependent potentials, 246, 395, 401
Spin-dependence of helium spectrum, 290
Spin flip in deuteron photeodisintegration,

355
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Spin and Intensity rules, 358
Spin matrices, 232
Spin-orbit coupling, 272, 304
Spin singlet wave functions, 244
Spin precession in magnetic field, 236
Spin-statistics connection, 148
Spin triplet wave function, 244
Spinors, 233
Spreading of wave packet, 31
Square well, 78
bound states, 185
deep potential limit, 186
resonant scattering, 390
S wave, 186, 392
in three dimensions, 188, 189
Square integrable functions, 46,111
Stark effect, 259
convergence of periurbation series, 266
for n = 2 states, 263
and parity, 260
second order, 261
Stefan-Boltzmann law, 6
Strange particle production and decays, 437
Strangeness, 436, 440
Sum rules, 263, 268
Superconducting gap, 89
Superposition of waves, see Wave packets
Symmetry of Hamiltonian, 66

Thomas precession effect, 172

Thomas-Reiche-Kuhn sum rule (problem),
268

Time dependence of expectation values, 120

Time dependence of operators, 135

Time dependence of wave functions, 53

Time development of systems, 134

Time development of decaying state, 473

Time-energy uncertainty relation, 36, 366

Transition rate, 347

relation to lifetime, 365

Transmission coefficlent for square well,
76

Transmission coefficient in WKB approxi-
mation, 86

Triplet state, behavior undey particle ex-
change, 250

Tunneling, 85, 86

Twao-particle system, 144

Two-dit experiment, 20, 34

Uncertainty relations, 33, 62
dispersion, 119
use for estimates, 39
general proof, 497
in infinite box, 62
nuclear 1ecoil in Mossbauer effect, 372
shadow scattering, 386
Unitary symmetry, 442
octets and decuplets, 443
discavery of 27, 444

Valence bonds, 329
Variational principle, for atoms, 299
for helium, 292
for molecules, 318, 328
Vectar poteniial, 209
for constant magnetic field, 211
Vector potential for emission and absorption
of photons, 343
Vector spaces, 113
Virial theorem (problem), 208

Water melecule, 336, 337
Wave equation, see Schrodinger equation
Wave mechanics, general structure, 111
Wave packets, 27, 62

gaussian, 28

limitations on width, 28

and non-hormalizable states, 69

-propagation, 30

in scattering, 379

spreading, 31
‘Wave-particle duality, 20
Wentzel-Kramers-Brillouin (WKB) approxi-

mation, 85, 469

Wien law for black body radiation, 2
‘Work function, 8, 87

Yukawa theory of nuclear forces, 39, 481
Yukawa form of nuclear potential, 484

Zeeman effect, normal, 213
anomalous, 275
for strong fields, 277

Zero-point energy, 105

Zero-rFero transition selection rule, 356




